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Chapter

7

Set Theory

The Library of Congress, the national library of the United States, contains a vast collection
of works that fill over 800 miles of bookshelves, and somewhere around 10,000 new works are
added each day. The question naturally arises: how can anything be found in such a huge,
diverse collection? The answer, of course, lies in categorization, or organization.

Librarians, among others (like grocery store planners, for instance), have to be experts at
categorization, in order to arrange their collections in such a way that items are easy to find.
The basics of this skill are natural, though; you have an intuitive idea of how to categorize
objects in a way that makes sense. When we categorize, what we’re really doing is creating
sets. For instance, a library has a fiction section, where the set of novels in their collection are
placed. Within that set of novels, there may be a subset of young adult fiction, a subset of
historical fiction, and so on. As a student, you can be categorized by your major, the classes
you’re taking, your year in school, etc., each of which can be expressed as a set.

It turns out that much of higher mathematics (which we don’t do in this book) uses the
terms and concepts of set theory extensively. We’ll only see the basic structure of set theory
in this chapter, but this way of thinking is valuable to those who study mathematics in more
detail.

In fact, if you compare this chapter to the chapter on logic, you’ll notice some similar ideas
coming up, which illustrates the ties that set theory has to other areas of mathematics.
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340 CHAPTER 7 Set Theory

SECTION 7.1 Basic Concepts

The definition of a set is a very simple one:

Definition: A set is a collection of objects.

The fact that this definition is so simple is important; the simplicity is what allows us to
apply the ideas of set theory to so many different fields, because we only have to be working
with “objects.”1

As far as notation, we use curly braces to enclose the objects in a set, called the elements of
the set, and we separate the elements with commas. Thus, the set that consists of the numbers
1, 2, and 3 would be written

S = {1, 2, 3}.
Also, based on the definition above, all it takes to define a set is to describe what objects

are in it, and the order in which they are listed is irrelevant. Thus, the following two
sets are identical:

A = {a, b, c} and B = {b, c, a}
This way of describing a set by listing its elements is often called roster notation.

SET NOTATIONEXAMPLE 1

Let S be the set of the days of the week. Write this using roster notation.

Solution We could list the days of the week in any order, but of course, there is a traditional
order to them.

S = {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday }

SET NOTATIONEXAMPLE 2

Create a set that represents three courses that a college student may be taking.

Solution In this case, there is no natural order. To make an example, we’ll choose the following
three courses:

S = {Introduction to Philosophy, Western Civilizations, Statistics}

TRY IT Let S be the set of the first five odd numbers. Write S using roster notation.

Since a set is defined solely by what elements belong to it, we need a way to describe whether
something belongs to a specific set or not. We get a new symbol to do this:

“Is an element of”

The symbol ∈ is read “belongs to” or “is an element of.”

Ex: a ∈ {a, b, c} can be read “a is an element of the set {a, b, c}” or “a belongs to the
set {a, b, c}”

Putting a stroke through it changes the meaning to “does not belong to.”

Ex: d /∈ {a, b, c}

1In fact, the objects in a set could be sets themselves, so we can construct a set of sets, and so on.

https://www.youtube.com/watch?v=QKKv0mF1wdo&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=1
https://www.youtube.com/watch?v=QKKv0mF1wdo&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=1
https://www.youtube.com/watch?v=cZkOnM0HnhU&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=2
https://www.youtube.com/watch?v=cZkOnM0HnhU&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=2
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USING ELEMENT NOTATION EXAMPLE 3

Place ∈ or /∈ in each of the following blanks to make each statement true.

(a) Apple F , where F is the set of all fruits

(b) g {a, e, i, o, u}

(c) 3 the set of positive real numbers

SolutionIt should be clear that an apple belongs to the first set, and 3 belongs to the set of
positive real numbers, but g does not belong to the given set of letters.

(a) Apple ∈ F , where F is the set of all fruits

(b) g /∈ {a, e, i, o, u}

(c) 3 ∈ the set of positive real numbers

Common Sets

There are some sets that come up more than others, so we’ll take a moment here to list
them, along with a symbol that we can use for each.

R The set of all real numbers; basically, any number that
you can use to count or measure something2

Z The integers3,4: {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

N The natural numbers (or counting numbers)5:
{1, 2, 3, . . .}

These symbols, along with the element symbol, give us another way to define sets, using
what is sometimes called set-builder notation, where instead of listing the elements of a set,
we give a rule that defines them.

For instance, we could write

S = {x ∈ N | x is even}.

If we wanted to read it, we would need to know that the vertical line in the middle of the set
is read “such that,” so the line above would read

“S is the set of all x in the natural numbers such that x is even”

and if we started listing elements of this set, we would write

S = {2, 4, 6, 8, 10, . . .}.

Notice that we have to use ellipses when we write it this way, to denote that this set keeps
on going and going. By writing it in set-builder notation, though, we have a concise way of
accounting for all the elements of the set by giving the rule that they all have to satisfy.

2Notice that we can’t list this set like we do the others, because there’s no way to account for all of them.
3The letter Z comes from the German word for “number.”
4The ellipses (. . .) indicate that this is an infinite set, extending forever in both directions.
5These are the positive integers.

https://www.youtube.com/watch?v=es7OjKUBhoY&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=3
https://www.youtube.com/watch?v=es7OjKUBhoY&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=3
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We do this naturally in language; we might talk about the set of all sophomores at a college,
or the set of people on the Dean’s List. Remember, to define a set, all we need is a clear
indication of what elements belong to a set; we can do this by listing them, or by giving a rule
that they all must follow.

SET BUILDER NOTATIONEXAMPLE 4

List the elements of the following sets that are described using set builder notation. If
the sets are infinite, list the first five elements.

(a) A = {x ∈ Z | x ≥ −3}

(b) B = {x ∈ N | 2 ≤ x ≤ 8}

Solution

(a) A = {x ∈ Z | x ≥ −3}

A = {−3,−2,−1, 0, 1, . . .}

(b) B = {x ∈ N | 2 ≤ x ≤ 8}

B = {2, 3, 4, 5, 6, 7, 8}

TRY IT Find a way to write the following set in set builder notation.

C = {. . . , 3, 4, 5, 6, 7}

Subsets

The idea of a subset is an intuitive one; if I told you that your class is a subset of students
at your college, you would intuitively understand what I meant. We can make this definition
more precise, though:

Subset

We say that one set A is a subset of another set B, written

A ⊆ B

if every element in A is also an element of B.

This notation can be informally read as “A is contained in B,” which can be helpful in
remembering the notation, since the subset symbol looks like a capital C.

In other words, your class is a subset of students at your college because every student in
your class is also a student at your college. However, we probably couldn’t say that your friends
form a subset of students at your college, because, while many of your friends may be at your
school, you may have friends that do not belong to that set.

https://www.youtube.com/watch?v=fWCZWtymTGc&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=4
https://www.youtube.com/watch?v=fWCZWtymTGc&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=4
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SUBSETS EXAMPLE 5

Place ⊆ or �⊆ in each of the following blanks to make each statement true.

(a) {Spring, Fall} {Winter, Spring, Summer, Fall}

(b) {Green, Blue, Red} {Red, Yellow, Green}

(c) {North, South, East, West} {West, South, North, East}

(d) {−2, 5,−1} Z

(e) {−2, 5,−1} {x ∈ Z | x > 0}

Solution

(a) {Spring, Fall} ⊆ {Winter, Spring, Summer, Fall}, because both elements in
the first set also appear in the second set.

(b) {Green, Blue, Red} �⊆ {Red, Yellow, Green}, because the element “Blue”
appears in the first set, but not the second one.

(c) {North, South, East, West} ⊆ {West, South, North, East}, because, once
again, every element in the first set also appears in the second set (they happen
to be the exact same set, just written in a different order).

(d) {−2, 5,−1} ⊆ Z, because each of those numbers in the first set are integers.

(e) {−2, 5,−1} �⊆ {x ∈ Z | x > 0}, because not all of the numbers in the first set
meet the condition in the second set (two of them are negative).

TRY ITPlace ⊆ or �⊆ in each of the following blanks to make each statement true.

(a) {1,7,6,3} {x ∈ N|1 ≤ x ≤ 10}

(b) {a, b, c} {a, e, i, o, u}

Notice in the third item of the example above that the given set was contained in itself.
This will always be true by definition: naturally, every element in A will be an element in A,
so

A ⊆ A.

That is why we include a line below the C, similar to how we use the symbol ≤ to indicate
“less than or equal to.” The subset symbol can be thought of as “is contained in or equal to.”

Therefore, we can also define a proper subset, which is a subset that is not equal to the
set that contains it. This is written without the line underneath the C.

For instance, {1, 2, 3} is a proper subset of {1, 2, 3, 4}, but {1, 2, 3, 4} is not. In general,

A ⊂ B

if A is completely contained in B, and B has at least one extra element that A doesn’t have.

https://www.youtube.com/watch?v=5n1TZYFCeYo&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=5
https://www.youtube.com/watch?v=5n1TZYFCeYo&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=5
http://hartleymath.com/versatilemath/tryit/#/set-theory--subset-notation
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PROPER SUBSETSEXAMPLE 6

Place ⊂ or�⊂ in each of the following blanks to make each statement true.

(a) {0, 1, 2} Z

(b) {0, 1, 2} {x ∈ Z | 0 ≤ x ≤ 2}

Solution

(a) {0, 1, 2} ⊂ Z, because every element in the first set belongs to the set of
integers, Z.

(b) {0, 1, 2} �⊂ {x ∈ Z | 0 ≤ x ≤ 2}, because the two sets are equal, so the first set
is not a proper subset of the second.

Of course, a given set could be a subset (or proper subset) of many different sets. For
instance, consider the set A = {“Much Ado About Nothing”, “MacBeth”, “A Midsummer’s
Night Dream”}. This is a subset of the set of William Shakespeare’s plays, which of course
is itself a subset of all plays and all British literature, as shown in the Venn diagram below
(we’ll see more of these diagrams in the next section).

A

Shakespeare’s Plays

All British Lit All Plays

A = {“Much Ado About Nothing”, “MacBeth”, “A Midsummer’s Night Dream”}

https://www.youtube.com/watch?v=c06crpTh6-8&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=6
https://www.youtube.com/watch?v=c06crpTh6-8&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=6
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The Empty Set
What if we describe a set like the following?

{x ∈ R | x < 2 and x > 5}

If you try to list the elements in this set, you’ll quickly find that there are none, because it is
impossible for a number to be simultaneously less than 2 and greater than 5.

This is an example of one way to describe the empty set6, whose name gives it away: the
empty set is defined as the set with no elements.

The Empty Set

The set { }, which contains no elements, is called the empty set and is written with
the symbol ∅.

(note: it is not written {∅}, because that would mean a set with one element, and that
element is the empty set)

EMPTY SET EXAMPLE 7

Which of the following sets are empty?

(a) The set of the days of the week whose names start with P.

(b) The set of students at Frederick Community College under the age of 25.

Solution

(a) This set is empty; since there are no days of the week that start with P, there are
no elements in this set.

(b) Since there are students that fall into this category, this set is not empty.

Cardinality
The cardinality of a set is just a fancy term for the number of elements it contains.

Cardinality

The cardinality of a set A is the number of distinct elements in A.

The cardinality of A is denoted n(A), or sometimes |A|.

CARDINALITY EXAMPLE 8

Find the cardinality of each of the following sets.

(a) A = {3, 5, 9, 32}

(b) B = {2, 3, 2, 4, 2}

(c) C = {31, 32, . . . , 58}

(d) D = ∅

6Note that we call it the empty set because every empty set is identical to every other empty set, so
there’s really just one distinct empty set.

https://www.youtube.com/watch?v=eeoqxfH7sMQ&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=7
https://www.youtube.com/watch?v=eeoqxfH7sMQ&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=7
https://www.youtube.com/watch?v=Rh8ss4TBAdo&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=8
https://www.youtube.com/watch?v=Rh8ss4TBAdo&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=8


346 CHAPTER 7 Set Theory

Solution

(a) Since there are four elements listed, n(A) = 4 .

(b) There are five elements listed, but notice that 2 is listed three times, so there are
really only three distinct elements in this set. Therefore, n(B) = 3 .

(c) Even though only three elements are shown, the ellipses indicate that this set
includes all the integers from 31 to 58. Since this includes 28 integers (note
carefully, not 27), n(C) = 28 .

(d) There are no elements in the empty set, so n(D) = 0 .

Summary
Since we’ve encountered so many new terms and symbols in this section, it may be helpful to
pause for a moment and review these new concepts.

New Terms

Set A collection of objects

Subset A is a subset of B if all the elements of A are also elements of B

Proper subset A subset that is not equal to its containing set

Empty set The set that contains no elements

Cardinality The number of distinct elements in a set

New Symbols and Notation

Set notation Uses curly braces: {. . .}

∈ Is an element of

R The set of real numbers

Z The set of integers

N The set of natural numbers (integers starting at 1)

⊆ Subset

⊂ Proper subset

∅ The empty set

n(A) The cardinality of A
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Sidenote: Infinite Sets
For some sets, we can count the number of elements and call that number their cardinality.
These are called finite sets. Others, like the integers, for instance, are infinite sets. Can we
talk about the cardinality of an infinite set?

It turns out that we can. Georg Cantor, the founder of set theory, was one of the first
mathematicians to dive headfirst into an investigation of infinite sets (for which his career
suffered tremendously as others ridiculed his work at the time), and his contributions have
since been lauded as groundbreaking.

Let’s start with the natural numbers (N = {1, 2, 3, . . .}), an infinite set. The cardinality of
this set is not a number, because there are infinitely many elements in the set, but we call this
cardinality aleph-nought (aleph being the first character in the Hebrew alphabet), written ℵ0.

Now, here comes the mind-bendy part, so hang on tight. It makes sense to say that two
sets have the same number of elements (the same cardinality) if we can place their elements
in one-to-one correspondence. In other words, if each Shark can pair up with exactly one Jet,
there must be the same number of Sharks and Jets.

You may not believe this the first time you hear it, but it’s true: the natural numbers and
the integers have the same cardinality. But hold on, there are clearly more integers, right, since
there are negative numbers in the integers? But look, we can place the natural numbers and
the integers in a one-to-one correspondence:

N 1 2 3 4 5 6 7 8 9 10 . . .

l l l l l l l l l l

Z 0 1 −1 2 −2 3 −3 4 −4 5 . . .

If you think that’s at all interesting, Google “Hilbert’s Hotel” and enjoy.

Any infinite set that is infinite in this same way, meaning that it can be placed in one-to-one
correspondence with the natural numbers, is called a countable set. There are some infinite
sets that are uncountable; the set of real numbers is the notable example of this. There is no
way to count through the real numbers and make any progress, unlike the way that we can
count through the natural numbers or the integers.
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Russell’s Paradox

Since

Bertrand Russell in 1916

the definition of a set is so broad, we can in theory define a set of sets. For
instance, you could treat every baseball team in the MLB as a set, where the elements
are the players on that team, and then the MLB could be a set of sets, where its
elements are the teams in the league.

However, a subtle problem arises here, and Russell’s Paradox, discovered by Bertrand
Russell in 1901, is a famous illustration of it.

Before we state this paradox, we’ll give two informal representations of it.

Barber Paradox Suppose in a certain town, there is a barber who shaves all men
who don’t shave themselves, and these are the only men he shaves. Does he shave
himself?

Of course, if he doesn’t shave himself, he is one of the ones in the category of peo-
ple that he does shave, and if he does shave himself, he is not, leading to a contradiction.

Library Paradox Consider another situation: there are 100 libraries in a country,
and each library has a book that is a written catalog of all the books in that library.
As each library is compiling its catalog, they face this question: should they list this
catalog as one of the books in the library? Fifty of the libraries choose to list their
catalog in their catalog, and 50 choose not to.

Now, suppose the national library wants to create a master catalog of all these individual
catalogs. In fact, they create two lists: one is the list of all the catalogs that list
themselves, and the other is the list of those that don’t.
Here comes the paradox: should this master catalog list itself in the category of those
that don’t? If it lists itself in that category, it no longer belongs to that category, and
vice versa.

Russell’s Paradox Russell’s Paradox, in precise terms, goes like this: let R be the
set of all sets that are not members of themselves. If R is a member of itself, then by
definition, it cannot be a member of itself, and vice versa. Symbolically, we could write
it this way:

R = {x | x /∈ x} implies R ∈ R if and only if R /∈ R

Solution This paradox may seem abstract and a little contrived, but it was a
powerful blow to the development of set theory, because it struck at the heart of what
it means to define a set.

To resolve this paradox, the generally accepted set theory (Zermelo-Fraenkel) essentially
did away with the ability to define sets the way that Russell did, requiring sets to be
well-defined.
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Exercises 7.1
In problems 1–4, write each set using roster notation.

1. A = the set of letters in the word “Mississippi.” 2. B = the set of the four seasons in a year.

3. C = the set of natural numbers less than 6. 4. D = the set of even natural numbers between 7 and 13.
In problems 5–13, fill in the blank with either ∈ or /∈ to make each statement true.

5. 6 {2, 4, 6, 8, 10} 6. 7 {2, 4, . . . , 12, 14} 7. 11 {1, 2, 3, . . . , 9}

8. 37 {1, 2, 3, . . . , 50} 9. 3 {x ∈ Z | x > −2} 10. -2 N

11. 20 {x ∈ N | 12 ≤ x < 20} 12. 14 {x ∈ Z | x < 100} 13. −3 {x ∈ Z | x ≥ −8}

In problems 14–17, write each set using roster notation.

14. {x ∈ N | x < 10 and x is odd}. 15. {x ∈ N | 2 ≤ x ≤ 5 and x is even}.

16. {x ∈ N | x < 4}. 17. {x ∈ N | 3 < x < 7}.

In problems 18–23, fill in the blank with either ⊆ or �⊆ to make each statement true.

18. {1, 3, 6} {1, 2, 3, 4} 19. {2, 4, 6} {1, 2, . . . , 10} 20. {−1, 0, 2} N 21. ∅ N

22. {b, c, d, e} {a, b, c, d, e, f, g, h} 23. {x | x is a cat} {x | x is a black cat}

In problems 24–29, fill in the blank with either ⊂ or�⊂ to make each statement true.

24. {x, y, z} {x, u, w, v, z, y, t} 25. {0, 3, 4, 7, 1} {1, 3, 0, 7, 4} 26. ∅ {a, b, c, d}

27. {x | x is a woman}
{x | x is a person}

28. {x ∈ N | 5 < x < 12} the set
of natural numbers between 5 and 12

29. {} ∅

In problems 30–32, determine whether each set is empty or not.

30. A = {0} 31. B = {x | x is a month of the year
whose name begins with the letter X}

32. C = {x | x < 2 and x > 7}

In problems 33–38, find the cardinality of each set.

33. A = {12, 14, 16, 18, 20} 34. B = {1, 3, 5, . . . , 25} 35. C = {x ∈ N | 3 ≤ x < 14}

36. D = {x ∈ N | x < 2 and x ≥ 5} 37. E = ∅ 38. F = {x | x is a letter
in the word “elephant”}

https://www.myopenmath.com/index.php
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SECTION 7.2 Set Operations

Once we can talk about individual sets, we can start thinking about relationships among
these sets. For instance, think back to the example from the chapter introduction about a
library categorizing books in their collection.

If they have a set of books written in the 20th century, and they have a set of science fiction
books, we could “combine” these two sets and look for only the science fiction novels written in
the 20th century, excluding other books written in the 20th century and other science fiction.

On the other hand, we could look for any book written in the 20th century that is NOT
in the category of science fiction. And of course there are other combinations we could make
with these two sets.

This is similar to the way we can use a search engine like Google to refine the results of a
search.7

We’ll define four operations that we can use to describe the relationship between two sets:

1. The complement of a set

2. The union of two sets

3. The intersection of two sets

4. The difference between two sets

You’ll find that these operations are well named, because their names describe what they do.

Before we get to those, though, we need to define what we call the universal set, because
we’ll need to keep track of this universal set when we look at examples.

Universal Set

In a particular situation,a the universal set is the set of all the objects that we are
considering in this context.

aThe universal set will be different in different problems.

In other words, if the problems starts by describing the books in a library, then the set of
all the books at that library will be the universal set. On the other hand, if the problem starts
with the students in your classroom, those students will form the universal set.

Venn Diagrams
As we go through these operations, it will be helpful to use diagrams to visualize them; these
diagrams are called Venn diagrams, since they were introduced by John Venn in 1880. A
basic Venn diagram consists of a box (usually shown) that represents the universal set, and
circles inside that box that represent sets that we want to talk about.

One Set Another Set

Universal Set

Notice the overlapping region in the middle; this represents the elements that belong to
both sets.

7See the first section of the chapter on Logic for more details.
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For instance, we could categorize students in your classroom by hair color and eye color,
specifically looking at the set of students who have brown hair and the set of students with
brown eyes.

Brown-Eyed Brown-Haired

Students in the classroom

There are (probably) some students in the overlapping region, who have brown hair and
brown eyes. But it is certainly possible to have brown eyes and not brown hair, and vice versa.
Also, it is possible to not have brown eyes or brown hair, and these would be the students
inside the rectangle but outside of both circles.

We could have an example, though, where there are no shared elements between the two
sets. For instance, if the two sets we considered were “letters in the Greek alphabet” and
“letters in the Hebrew alphabet,” those two circles would not overlap at all. We call these
disjoint sets.

A B

Disjoint Sets

We could also have an example where one set is completely contained in another, like in the
case of the sets “all students” and “students at your school.”

A

B

Proper Subset

Now that we have Venn diagrams at our disposal, we’re ready to define the complement,
union, intersection, and difference.
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Complement

Complement

The complement of a set A, denoteda Ac consists of all elements (in the universal set)
that do not belong to A.

A

Ac

Ac = {x | x ∈ U and x /∈ A}
aOther books might write A′ or A to indicate the complement.

COMPLEMENTEXAMPLE 1

In the alphabet, find the complement of V , the set of vowels.

Solution The complement of the vowels (i.e. the letters that aren’t vowels) is the set of conso-
nants:We’re assuming that y is not a

vowel V c = {b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z}

Notice that we especially need a well defined universal set (like the 26 letters of the
alphabet) to be able to describe the complement of a set clearly.

COMPLEMENTEXAMPLE 2

Given the universal set U = N, find the complement of

A = {x ∈ N | x ≥ 10}.

Solution The complement of the natural numbers greater than or equal to 10 is, as you may
expect, the natural numbers less than 10 (notice that 10 is in A, so it is not in Ac):

Ac = {x ∈ N | x < 10} = {1, 2, 3, 4, 5, 6, 7, 8, 9}

COMPLEMENTEXAMPLE 3

If the universe is U = {1, 2, 3, . . . , 10}, find the complement of the set E = ∅.

Solution The complement of the empty set is the set of all points in the universe:

Ec = U = {1, 2, 3, . . . , 10}

https://www.youtube.com/watch?v=6ZaKLBWs0pQ&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=9
https://www.youtube.com/watch?v=6ZaKLBWs0pQ&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=9
https://www.youtube.com/watch?v=xuF80sH5nE4&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=10
https://www.youtube.com/watch?v=xuF80sH5nE4&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=10
https://www.youtube.com/watch?v=CQkDnkSmXag&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=11
https://www.youtube.com/watch?v=CQkDnkSmXag&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=11
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Union

Union

The union of two sets A and B, denoteda A∪B, consists of all elements that are either
in A or in B OR BOTH. This is the part that trips up

the most people. The union
includes elements that are in
both sets, which isn’t
necessarily how we tend to use
the word “or”; for instance, if
someone said “write down your
first name or your last name,”
you wouldn’t think to write
both. The way we often use it
in English is called the
exclusive OR, meaning that it
doesn’t include “...or both,”
but in set theory (and logic)
we use the inclusive OR.

A B

A ∪B

A ∪B = {x | x ∈ A or x ∈ B}
aYou can remember this because the symbol looks like a U for union.

Again, note that all it takes for an element to be in the union of two sets is for it to belong
to at least one of them. For instance, you’d be in the union of “people who own a car” and
“people who own a bike” as long as you owned at least one of those; if you owned a car and a
bike, you’d also be in the union.

UNION EXAMPLE 4

Find the union of the following sets.

(a) A = {5, 6, 2, 4} and B = {1, 4}

(b) A = {a, b, c, d} and B = {x, y, z}

(c) A = N and B = ∅

Solution

(a) Again, the union of two sets is all the elements that are in either set (we only list
repeated elements once):

A ∪B = {5, 6, 2, 4, 1}

Remember, the order in which we list the elements in a set is not significant.

(b) Here there are no elements common to both sets:

A ∪B = {a, b, c, d, x, y, z}

(c) Note that if you take the union of any set with the empty set, you’ll get the set
you started with, because the empty set doesn’t add anything:

A ∪B = N ∪∅ = N

TRY ITIf A = {1, 3, 5, 7} and B = {2, 3, 4}, find A ∪B.

https://www.youtube.com/watch?v=9jNZnZEBeqQ&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=12
https://www.youtube.com/watch?v=9jNZnZEBeqQ&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=12
http://hartleymath.com/versatilemath/tryit/#/set-theory--set-union
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Intersection

Intersection

The intersection of two sets A and B, denoted A∩B, consists of all elements that are
in both A and B.

A B

A ∩B

A ∩B = {x | x ∈ A and x ∈ B}

INTERSECTIONEXAMPLE 5

Find the intersection of each pair of sets.

(a) {1, 3, 5, 7, 9} ∩ {2, 3, 4, 5}

(b) {x | x is even} ∩ {x | x is odd}

(c) N ∩∅

Solution

(a) {1, 3, 5, 7, 9} ∩ {2, 3, 4, 5} = {3, 5}

(b) {x | x is even} ∩ {x | x is odd} = ∅

(c) N ∩∅ = ∅

TRY IT If A = {1, 3, 5, 7} and B = {2, 3, 4}, find A ∩B.

Note: look back at that last example and make sure you can verify that for any set A,

A ∪∅ = A

A ∩∅ = ∅

https://www.youtube.com/watch?v=HnkSyD8Ch5E&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=13
https://www.youtube.com/watch?v=HnkSyD8Ch5E&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=13
http://hartleymath.com/versatilemath/tryit/#/set-theory--set-intersection
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Difference
The difference between two sets is fairly intuitive: it consists of all the elements of the first
set that are not elements of the second set. In other words, take the first set and remove any
elements from it that also show up in the second set, and what’s left is the difference.

The only unusual part is the symbol we use to denote this; it looks like a minus sign, but it’s
slanted to indicate that we’re finding a set difference, not the difference between two numbers.

Difference

The difference of two sets A and B, denoted A \ B, consists of all elements that are
in A, but not in B.

A B

A \B

A \B = {x | x ∈ A and x /∈ B}

DIFFERENCE EXAMPLE 6

If A consist of whole numbers from 1 to 9, and B = {7, 8, 9, 10, . . .}, find A \B.

SolutionTake away every element from A that also occurs in B, and you get

A \B = {1, 2, 3, 4, 5, 6}

TRY ITIf A = {1, 3, 5, 7} and B = {2, 3, 4}, find A \B.

Note: Since the difference is everything that is in A AND (intersection) NOT (complement)
in B, we can write the difference in terms of the intersection and complement:

A \B = A ∩Bc

https://www.youtube.com/watch?v=XZrZRxQ8Axo&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=14
https://www.youtube.com/watch?v=XZrZRxQ8Axo&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=14
http://hartleymath.com/versatilemath/tryit/#/set-theory--set-difference
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DIFFERENCEEXAMPLE 7

Use the following sets to illustrate that

A \B = A ∩Bc.

A = {1, 2, 3, 4, 5, 6, 7, 8, 9}
B = {7, 8, 9, 10, . . .}

Solution We just found the difference A \B in the last example:

A \B = {1, 2, 3, 4, 5, 6}

Now we just have to show that if we find A ∩Bc, we get the same answer:

Bc = {. . . , 4, 5, 6} −→ A ∩Bc = {1, 2, 3, 4, 5, 6}

Combining Operations
As we just saw with A ∩ Bc, we can use several set operations in combination. If we need to,
we can use parentheses as grouping symbols to make the order of operations clear.

COMBINING OPERATIONSEXAMPLE 8

Suppose that U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 3, 5, 7}, and B = {4, 5, 6, 7}. Find
each of the following.

(a) (A ∪B)c

(b) Ac ∩Bc

(c) (A ∩B)c

(d) Ac ∪Bc

Solution

(a) Note that according to the parentheses, we need to start by finding A ∪ B, and
then we need to take the complement of this union:

A ∪B = {1, 3, 4, 5, 6, 7}

=⇒ (A ∪B)c = {2, 8, 9, 10}

(b) Since there are no parentheses, we’ll first find the two complements individually,
and then find their intersection:

Ac = {2, 4, 6, 8, 9, 10} and Bc = {1, 2, 3, 8, 9, 10}

=⇒ Ac ∩Bc = {2, 8, 9, 10}

(c) Here again we start inside the parentheses:

A ∩B = {5, 7}

=⇒ (A ∩B)c = {1, 2, 3, 4, 6, 8, 9, 10}

(d) Finally, take the union of the complements:

Ac = {2, 4, 6, 8, 9, 10} and Bc = {1, 2, 3, 8, 9, 10}

=⇒ Ac ∪Bc = {1, 2, 3, 4, 6, 8, 9, 10}

https://www.youtube.com/watch?v=TYFOyfN9hnw&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=15
https://www.youtube.com/watch?v=TYFOyfN9hnw&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=15
https://www.youtube.com/watch?v=PCEPxKrRaQE&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=16
https://www.youtube.com/watch?v=PCEPxKrRaQE&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=16
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TRY ITFor the sets listed in the example above, find

(a) Ac ∪B

(b) A ∩Bc

(c) B ∪Bc

(d) A ∩Ac

Notice something interesting: that example, as a side note, illustrates the following two
facts:

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

These are known as De Morgan’s laws, and we’ll restate and explain them in the next
section, but before you get there, see if you can come up with an intuitive way of explaining
why this makes sense. Maybe think of some simple, well-defined sets, and see if you can under-
stand why the complement of the union is the intersection of the complements, and vice versa.

It may also help to draw some Venn diagrams to visualize this.

Using Three Sets

Extending the use of set operations to three sets (or more) is not difficult, as long as we’re
careful, especially with grouping.

SET OPERATIONS WITH THREE SETS EXAMPLE 9

Suppose that H = {cat, dog, rabbit, mouse}, F = {dog, cow, duck, pig, rabbit}, and
W = {duck, rabbit, deer, frog, mouse}.

(a) Find (H ∩ F ) ∪W .

(b) Find (H ∩ F )c ∩W .

Solution

(a) Start by finding the intersection: H ∩ F = {dog, rabbit}
Then take the union of this answer with W :

(H ∩ F ) ∪W = {dog, duck, rabbit, deer, frog, mouse}

(b) We already found this intersection: H ∩ F = {dog, rabbit}
Now we want elements that are NOT in this set, and ARE in W :

(H ∩ F )c ∩W = {duck, deer, frog, mouse}

TRY ITFor the sets listed in the example above, find

(a) H ∪ F c ∪W

(b) H ∩ (F ∪W )

(c) Hc ∩ F ∩W

If you want a bit of a challenge, try drawing a Venn diagram for the set (H ∩ F )c ∩W .

http://hartleymath.com/versatilemath/tryit/#/set-theory--combining-set-operations-numbers
https://www.youtube.com/watch?v=6Ghk61fjkcM&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=17
https://www.youtube.com/watch?v=6Ghk61fjkcM&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=17
http://hartleymath.com/versatilemath/tryit/#/set-theory--combining-set-operations-words
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Summary of Set Operations

Complement: Ac = {x | x ∈ U and x /∈ A}

Union: A ∪B = {x | x ∈ A or x ∈ B}

Intersection: A ∩B = {x | x ∈ A and x ∈ B}

Difference: A \B = {x | x ∈ A and x /∈ B} = A ∩Bc
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Exercises 7.2
In problems 1–28, let U = {1, 2, 3, . . . , 10}, A = {1, 3, 5, 7}, B = {1, 2, 3, 4}, and C = {3, 4, 6, 7, 9}.

Find each of the following sets.

1. Ac 2. Bc 3. A ∪ C 4. A ∩B

5. B ∩ C 6. A ∪B 7. A \B 8. C \A

9. Ac ∩Bc 10. Ac ∪ C 11. B ∪ Cc 12. A ∩Bc

13. (A ∪ Cc)c 14. (Bc ∩ C)c 15. (A ∩B)c 16. (B ∪A)c

17. A ∪∅ 18. B ∪∅ 19. C ∪∅ 20. B ∩∅

21. (A ∩B) ∪ C 22. (A ∪ C) ∩B 23. B ∪ (A ∩ C) 24. (A ∩B) ∪ (C ∩B)

25. (B ∪A) ∩ (B ∪ C) 26. (A ∪ C)c ∩Bc 27. A ∩B ∩ C 28. A ∪B ∪ C

In problems 29–40, use the following Venn diagram to find each set.

A B

a
b
c

f
g
h
i

d
e

j
k
l
m

29. Ac 30. A ∪B 31. (A ∩B)c 32. Ac ∪Bc

33. A \B 34. B \A 35. Ac ∩Bc 36. (A ∪B)c

37. U 38. Ac ∪B 39. A ∩Bc 40. A \ U

https://www.myopenmath.com/index.php


360 CHAPTER 7 Set Theory

SECTION 7.3 Properties of Set Operations

In this section, we’ll briefly state a few identities, including De Morgan’s laws that we
observed in the last section.

We won’t see any rigorous proofs of these identities, but if you’re curious, the way to prove
that two sets A and B are equal is to show that every element in each of them is also in the
other; in other words, to show that

A ⊆ B and B ⊆ A.

To do so, we would take an element from one set and show that it must belong to the other
set, and then pick an element from the second set and show that it must belong to the first.

Instead of doing proofs like that, we’ll simply illustrate each identity with an example and
with an appropriate Venn diagram.

Associative Identities
The associative identities essentially state that the placement of parentheses doesn’t matter
when we’re only doing one kind of operation (union or intersection):

(A ∪B) ∪ C = A ∪ (B ∪ C)
(A ∩B) ∩ C = A ∩ (B ∩ C)

Think about the first one, for instance, and let’s see if we can make sense of it. It says that
if we start with A, add in the elements of B, and then add in the elements of C, we’d get the
same result as if we start with B, add in the elements of C, and finally add in the elements of
A. Either way, we get the elements that are in any of the three sets.

A B

C

(A ∪B) ∪ C = A ∪ (B ∪ C)
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The second is similar: whether you start by intersecting A and B, and then intersect that
with C, or start by intersecting B and C, what you ultimately find is all the elements that
belong to all three sets at once. For instance, if you start by intersecting A and B, you start
with A, remove any elements that don’t belong to B, and finally remove any elements that
don’t belong to C.

A B

C

(A ∩B) ∩ C = A ∩ (B ∩ C)

ASSOCIATIVE IDENTITIES EXAMPLE 1

Suppose we have the following sets:

A = {1, 2, 3, 4, 5}
B = {2, 4, 6, 8, 9}
C = {1, 3, 9, 10, 11}

Illustrate the associative identities with these sets.

(a) First, show that (A ∪B) ∪ C = A ∪ (B ∪ C) in this example:

A ∪B = {1, 2, 3, 4, 5, 6, 8, 9}
(A ∪B) ∪ C = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11}

B ∪ C = {1, 2, 3, 4, 6, 8, 9, 10, 11}
A ∪ (B ∪ C) = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11}

(b) Then, show that (A ∩B) ∩ C = A ∩ (B ∩ C):

A ∩B = {2, 4}
(A ∩B) ∩ C = ∅

B ∩ C = {9}
A ∩ (B ∩ C) = ∅

In both cases, the associative identity held true.

https://www.youtube.com/watch?v=-sCqd8YgN-s&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=18
https://www.youtube.com/watch?v=-sCqd8YgN-s&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=18
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Distributive Identities
If you remember from your algebra classes, you can distribute something like

2(x + 4) = 2x + 8
by applying the multiplication to both terms inside the parentheses. We can do something
similar with set operations, where we can distribute one operation across parentheses where
the other is used:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

The best way to make sense of these is probably to use the Venn diagrams below:

A B

C

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A B

C

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
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DISTRIBUTIVE IDENTITIES EXAMPLE 2

Suppose we have the following sets:

A = {1, 2, 3, 4, 5}
B = {2, 4, 6, 8, 9}
C = {1, 3, 9, 10, 11}

Illustrate the distributive identities with these sets.

(a) First, show that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) in this example:

B ∪ C = {1, 2, 3, 4, 6, 8, 9, 10, 11}
A ∩ (B ∪ C) = {1, 2, 3, 4}

A ∩B = {2, 4}
A ∩ C = {1, 3}

(A ∩B) ∪ (A ∩ C) = {1, 2, 3, 4}

(b) Then, show that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C):

B ∩ C = {9}
A ∪ (B ∩ C) = {1, 2, 3, 4, 5, 9}

A ∪B = {1, 2, 3, 4, 5, 6, 8, 9}
A ∪ C = {1, 2, 3, 4, 5, 9, 10, 11}

(A ∪B) ∩ (A ∪ C) = {1, 2, 3, 4, 5, 9}

In both cases, the distributive identity held true.

De Morgan’s Laws
We’ve already noted these in passing. These are especially important when it comes to logic
(for instance, in computer programming), which is closely linked with set theory.

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

The The connection to logic is this:
if you tell someone “don’t get
bread or milk,” what you’re
really saying is “don’t get
bread, and don’t get milk.”

first one basically says that the set of points that don’t lie in either A or B is the same
as the set of points that don’t lie in A and don’t lie in B.

A B

(A ∪B)c = Ac ∩Bc

https://www.youtube.com/watch?v=d6WMaLCszKM&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=19
https://www.youtube.com/watch?v=d6WMaLCszKM&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=19


364 CHAPTER 7 Set Theory

The second one says that points that don’t lie in both A and B either don’t lie in A or don’t
lie in B.

A B

(A ∩B)c = Ac ∪Bc

DE MORGAN’S LAWSEXAMPLE 3

Suppose we have the following sets:

U = {a, b, c, d, e}
A = {b, c}
B = {a, c, e}

Illustrate De Morgan’s laws with these sets.

(a) First, show that (A ∪B)c = Ac ∩Bc in this example:

A ∪B = {a, b, c, e}
(A ∪B)c = {d}

Ac = {a, d, e}
Bc = {b, d}

Ac ∩Bc = {d}

(b) Then, show that (A ∩B)c = Ac ∪Bc:

A ∩B = {c}
(A ∩B)c = {a, b, d, e}

Ac = {a, d, e}
Bc = {b, d}

Ac ∪Bc = {a, b, d, e}

In both cases, De Morgan’s laws held true.

https://www.youtube.com/watch?v=fBOevsm5YrM&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=20
https://www.youtube.com/watch?v=fBOevsm5YrM&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=20
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Summary

Properties of Set Operations

Associative Identities

(A ∪B) ∪ C = A ∪ (B ∪ C)
(A ∩B) ∩ C = A ∩ (B ∩ C)

Distributive Identities

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

De Morgan’s Laws

(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc
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Exercises 7.3

Suppose that U = {1, 2, . . . , 10}, A = {1, 3, 5, 7}, B = {2, 3, 4, 5}, and C = {4, 5, 6, 7, 8}.

Associative Identities

1. Show that (A ∪B) ∪ C = A ∪ (B ∪ C). 2. Show that (A ∩B) ∩ C = A ∩ (B ∩ C).

Distributive Identities

3. Show that A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C). 4. Show that A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

De Morgan’s Laws

5. Show that (A ∪B)c = Ac ∩Bc. 6. Show that (A ∩B)c = Ac ∪Bc.

https://www.myopenmath.com/index.php


SECTION 7.4. Survey Problems 367

SECTION 7.4 Survey Problems

We can use sets to organize the results of a survey by visualizing the respondents with a
Venn diagram. Specifically, if a survey asks more than one question, a Venn diagram can be a
really handy tool.

MOVIE TYPES EXAMPLE 1

Brianne surveyed students in her school to determine what types of movies they prefer:
science fiction, comedy, both types of movies, or neither type of movie. If A represents
science fiction and B represents comedy, the following diagram shows the result of her
survey.

A B

613 24

8

Answer the following questions.

(a) How many students did Brianne survey?

(b) How many students like science fiction?

(c) How many students like only science fiction?

(d) How many students like comedy?

(e) How many students like comedy, but not science fiction?

(f) How many like both science fiction and comedy?

(g) How many like science fiction or comedy?

(h) How many like neither?

(i) How many do not like science fiction?

(j) How many do not like comedy?

Solution

(a) How many students did Brianne survey?
This includes everyone in the universal set; the number of people in this set is
the sum of all the numbers that are shown:

13 + 6 + 24 + 8 = 51

Therefore, she surveyed a total of 51 students.

(b) How many students like science fiction?
The total number of students who like science fiction is all those that are in the
blue circle:

13 + 6 = 19
There are 19 students who like science fiction.

https://www.youtube.com/watch?v=Nkay8g-5suM&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=21
https://www.youtube.com/watch?v=Nkay8g-5suM&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=21
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(c) How many students like only science fiction?
This is all those in the blue circle that are NOT also in the green circle, for a
total of 13

(d) How many students like comedy?
Similarly, there are

24 + 6 = 30
students who like comedy.

(e) How many students like comedy, but not science fiction?

This is all those in the green circle but outside the blue circle; there are 24 of
these students.

(f) How many like both science fiction and comedy?

Those who like both lie in the intersection of the two sets; there are 6 of these.

(g) How many like science fiction or comedy?
The word OR indicates that this represents the union of these two sets: there are

13 + 6 + 24 = 43

students who like science fiction or comedy.

(h) How many like neither?

This would be the 8 students outside of both circles.

(i) How many do not like science fiction?
There are two ways to do this. On the one hand, we could add up all the
numbers outside the blue circle. On the other, we could subtract those who like
science fiction (from part b) from the total number who were surveyed (from part
a). Either way, we find that there are 32 students who do not like science fiction.

(j) How many do not like comedy?

We can solve this one in a similar way; there are 21 students who do not like
comedy.

TRY IT A survey asked 100 people two questions: “Do you like M&Ms?” and “Do you like
Skittles?” The results are shown below.

M&Ms Skittles

1858 22

2

(a) How many people liked M&Ms, but not Skittles?

(b) How many people liked Skittles?

(c) How many people like M&Ms or Skittles?

http://hartleymath.com/versatilemath/tryit/#/set-theory--candy-survey
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If the results of a survey are not given as a Venn diagram, we can still build one to visualize
the results.

TRAVEL DESTINATIONS EXAMPLE 2

Of the students in Latoya’s class, eight have been to California, nine have been to Wash-
ington, and five have been to both California and Washington. How many students
have been to California or Washington?

SolutionWe can draw a diagram like in the previous example to answer this question:

California Washington

Here’s how to fill this in: start with the innermost intersection. The overlap
represents those who have been to both states, of which there are five.

Then, we know that a total of eight students have been to California; we’ve already
accounted for five of them in the overlap, so there are three students in the left circle
but NOT in the right circle. Similarly, there are a total of nine students who have been
to California, of which five have already been accounted for, leaving four others in the
right circle.

California Washington

53 4

Finally, we can answer the question: there are a total of 12 students (in the union of
the two sets) who have been to either California or Washington.

TRY ITOf the children in Sofia’s class, seven like to use markers, five like to use colored
pencils, and three like to use both. How many children like to use colored pencils but
not markers?

In examples like that one with only two categories, we could potentially answer the question
without drawing a diagram, but drawing the diagram becomes more and more helpful for more
complicated questions, like those with three categories.

https://www.youtube.com/watch?v=L02esvvq8W0&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=22
https://www.youtube.com/watch?v=L02esvvq8W0&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=22
http://hartleymath.com/versatilemath/tryit/#/set-theory--drawing-survey
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TV NETWORKSEXAMPLE 3

A survey of 125 people was conducted to determine the popularity of HBO, CNN, and
MTV. The survey found that 71 people watch HBO, 72 watch CNN, and 80 watch
MTV. Furthermore, 33 watch HBO and CNN, 42 watch HBO and MTV, and 47 watch
CNN and MTV. Finally, 11 watch all three.

Fill in the Venn diagram below.

HBO CNN

MTV

Solution As before, start with the innermost intersection and work outwards. There are 11 in
the center, and a total of 33 in the intersection of HBO and CNN, so there are 22 in
the intersection of HBO and CNN, but outside the center. Go on and fill in the other
two intersections, and then subtract to fill in the rest of the circles.

HBO CNN

MTV

11

22

3631

7 3

2

13

Now that we have the Venn diagram, we can answer questions like the following ones.

(a) How many watch only MTV?
2

(b) How many watch CNN and MTV, but not HBO?

36

(c) How many do not watch any of these networks?

13

(d) How many do not watch CNN?
53

(e) How many watch HBO or MTV?

109

https://www.youtube.com/watch?v=wOU7QC3X3Eo&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=23
https://www.youtube.com/watch?v=wOU7QC3X3Eo&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=23
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TRY ITFifty students were surveyed and asked if they were taking a social science, humanities,
or natural science course the next semester.

The survey found that 21 were taking a social science course, 26 were taking humanities,
19 were taking natural science. Also, 9 were taking social science and humanities, 7
were taking social science and natural science, and 10 were taking humanities and
natural science. Finally, 3 students were taking all three.

(a) How many students are taking only a social science course?

(b) How many are taking natural science and social science, but not humanities?

(c) How many are taking none of these courses?

COMCAST SERVICES EXAMPLE 4

A survey of 1000 households found that 470 use Comcast internet service, 420 use their
telephone service, and 319 use their cable television. Of these, 140 families use the
telephone and television services, 220 families use the internet and television service,
and 110 use the internet and telephone. There are 75 families who use all three.
The diagram below summarizes this information.

Internet Phone

Cable TV

75

35

65145

215 245

34

186

1. How many households in this survey do not use any of these services?

186

2. How many use exactly one of these services?

These are all the ones that lie in only one circle:

494

3. How many use exactly two of these services?

These are all the ones that lie in the intersection of two circles, but not in the
very center:

245

http://hartleymath.com/versatilemath/tryit/#/set-theory--course-survey
https://www.youtube.com/watch?v=Ibsknhlj6cg&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=24
https://www.youtube.com/watch?v=Ibsknhlj6cg&list=PLfmpjsIzhztuvrh-T2Owgo_gO84qypSBG&index=24
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Exercises 7.4

1. A survey asked 200 people what beverage they drink in
the morning, and offered two possible choices: tea and coffee.
Suppose that 20 answered tea only, 80 answered coffee only,
and 40 answered both.

(a) How many people drink tea in the morning?

(b) How many people drink neither tea nor coffee?

2. A survey asked 100 people whether they used Twitter or
Facebook in the last month. Of those surveyed, a total of 40
used Twitter, 70 used Facebook, and 20 used both.

(a) How many people used only Facebook?

(b) How many people used neither Facebook nor Twitter?

3. Out of 100 customers of Domino’s Pizza, 60 ordered pizza
with onions and pepperoni, 80 ordered it with pepperoni, and
72 ordered it with onions.

(a) How many ordered onions but not pepperoni?

(b) How many ordered pepperoni but not onions?

(c) How many ordered neither onions nor pepperoni?

4. Out of 100 students surveyed, 24 rent movies, 20 rent
movies and go the theater, and 15 do neither.

(a) How many students only rent movies?

(b) How many students only go to the theater?

(c) How many students go to the theater or rent movies?

5. An independent survey agency was hired by the Metro to find out how many people commute to their school or job. The
agency interviewed 1000 commuters and submitted the following report:

631 came by car 373: car and bus
554 came by bus 301: bus and metro
759 came by metro 268: car and metro
231: all three types of transportation

The Metro refused to accept the report, stating that it was inaccurate. Why?

6. One hundred fifty people were surveyed and asked if they
believed in UFOs, ghosts, and Bigfoot.

43 believed in UFOs 8: ghosts and Bigfoot
25 believed in Bigfoot 10: UFOs and ghosts
44 believed in ghosts 5: UFOs and Bigfoot

2 believed in all three

(a) How many people surveyed believed in at least one of
these things?

(b) How many people believed in ghosts and Bigfoot, but
not UFOs?

(c) How many people didn’t believe in any of the three?

(d) How many people believed in Bigfoot only?

7. A survey asked students whether they had seen Star Wars,
The Matrix, or Lord of the Rings (LotR).

24 had seen Star Wars 10: Star Wars and The Matrix
18 had seen The Matrix 12: The Matrix and LotR
20 had seen LotR 14: Star Wars and LotR

6 had seen all three

(a) How many students have seen exactly one of these
movies?

(b) How many students have seen only Star Wars?

(c) How many students have seen Star Wars, but not
LotR?

(d) How many students have not seen The Matrix?

8. A survey was given asking whether respondents watch
movies at home from Netflix, Redbox, or Amazon Video.

53 only use Netflix 48: only Netflix and Redbox
62 only use Redbox 16: only Redbox and Amazon
24 only use Amazon Video 30: only Netflix and Amazon
10 use all three 25: none of these

(a) How many people use Redbox?

(b) How many people use at least one of these?

(c) How many people were surveyed?

9. A survey asked buyers whether color, size, or brand in-
fluenced their choice of cell phone. The results are below.

5 only said color 20: only color and size
8 only said size 53: only size and brand
16 only said brand 42: only color and brand
102 said all three 20: none of these

(a) How many people were influenced by brand?

(b) How many people were influenced by color or size?

(c) How many people were surveyed?

https://www.myopenmath.com/index.php
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