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Chapter

2

Growth Models

What does the future hold? Although we cannot peer forward and find out for sure, it turns
out that in many cases we can use mathematical models to make predictions. For instance,
by tracking the development and path of a hurricane, we can predict where it will go next,
although weather prediction is such a difficult problem that the true path is often very different
from the prediction. While we won’t be tackling anything nearly as complicated as weather
forecasting, we will see in this chapter how to build a few different types of mathematical
models and use them to make predictions.

Of course, it is crucial to understand that no mathematical model is perfect. There will
always be a trade-off between the accuracy of a model and its simplicity. The simpler a model,
the more easily we can make predictions with it, but there will be more error in the approxima-
tion. On the other hand, more precise models may be more difficult—or even impossible—to
solve. You should always remember, though, that every model is at best an imperfect repre-
sentation of the real world, and there will always be some inherent error between what the
model predicts and what actually occurs.
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82 CHAPTER 2 Growth Models

SECTION 2.1 Linear Models

If you decide to train for a marathon and you currently run 3 miles a day, you may choose
to increase your distance by half a mile every week. Can we predict how far you’ll be running
in six weeks, or how long it will take to reach your goal? With small numbers like these, you
could answer those questions without using an equation, but we’ll use this as an example to
show how to build a simple model from a scenario like this.

Let Pt represent the number of miles that you run after t weeks, so P0 would be the number
of miles you currently run, P1 would represent the number of miles you run after 1 week, and
so on. We can define a recursive relationship like the following one to represent the scenario
that was laid out.

P0 = 3
Pt = Pt−1 + 0.5

A recursive relationship is one that defines each value in a sequence using previous values.
We could use this relationship to go from P0 to P1 to P2 and so on, all the way to P6 to answer
the first question, and we could keep going from one value to the next until we reached 26 to
answer the second question. However, this would be tedious and mindless, so instead we prefer
an explicit equation, or closed-form equation. Especially for predictions far into the future,
the recursive form is impractical, even though it arises easily from the problem description.

In this case, the explicit form is pretty straightforward, but deriving it from the recursive
form will be instructive:

P0 = 3
P1 = 3 + 0.5
P2 = 3 + 0.5 + 0.5 = 3 + (0.5)2
P3 = 3 + 0.5 + 0.5 + 0.5 = 3 + (0.5)3

...
Pt = 3 + 0.5t

This explicit equation gives an easy way to quickly answer both questions. We can substitute
6 for t to find that P6 = 3 + 0.5(6) = 6 miles, and we can substitute 26 for Pt and solve for t
to find how long it’ll take to reach your goal:

26 = 3 + 0.5t
23 = 0.5t
46 = t

It’ll take 46 weeks to reach your goal.



SECTION 2.1. Linear Models 83

5 10 15 20 25 30 35 40 45

5

10

15

20

25

Week

N
u

m
b

er
of

M
il

es

This graph shows why we call this linear growth. If we graph the number of miles versus the
week, the points lie along a straight line. This is consistent for every problem where a number
grows by a constant amount every time period. That’s the key to linear growth: there’s a
constant growth amount, which we’ll call d (for difference), that is added at each step. For
instance, in the marathon example, d = 0.5 because half a mile is added each week. Knowing
that, the following formula should look familiar, because it is the same form that we developed
above.

Linear Growth

If some quantity starts at size P0 and grows by d every time period, then the quantity
after t time periods can be predicted using the following formula.

Pt = P0 + dt

Here d represents the common difference—the amount that the quantity changes each
time t increases by 1.

Notice that this could refer to linear growth or linear decay; if d is negative, the quantity
will decrease linearly.

Knowing that the key to linear growth is this common difference between terms, we can
recognize linear growth from data if each term is the previous term plus a constant.

Term Quantity Difference from
Previous Term

0 15
1 27 12
2 39 12
3 51 12
4 63 12
5 75 12

As we can observe in this table, if we note that the quantity adds a constant amount each time,
we know that the growth is linear, and we can write the closed-form equation given above.

Notice that this is exactly the standard linear equation that you’ve seen in your algebra
classes:

y = mx+ b

Pt = dt+ P0

Here, P0 is the y-intercept, since it is the starting point, and thus the value when t = 0. Also,
d is the slope here, or the amount by which the quantity changes when t increases by 1.

These two equations are the same, but as you’ll see when modeling, we often rename the
pieces to more closely match the names of the real-world quantities we’re measuring.
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ELK POPULATIONEXAMPLE 1

The population of elk in a national forest was measured to be 12,000 in 2011 and 15,000
in 2015. If the population continues to grow linearly at this rate, what do we expect
the elk population to be in 2022?

We first need to define the parts of our linear growth equation. The initial amount P0
is the amount when t = 0, but we won’t use the actual year 0 as our starting point.
Instead, the initial amount in this problem is given in 2011, so we’ll define t = 0 to be
the year 2011, so P0 = 12, 000.

Next we need to find d, the growth per time period. Since the time period in this
example is one year, we’ll need to find how much the population grew each year.

Year Population
0 12,000
4 15,000

Since the population grew by 3,000 in 4 years, this represents a growth of 3,000/4 =
750 per year. Thus d = 750.

Note that this is equivalent to using the slope formula: rise
run

d = slope

= change in population
change in time

= 15, 000− 12, 000
2015− 2011

= 3000
4

= 750

Now we can write the explicit equation that models this population growth:

Pt = 12, 000 + 750t

To answer the question, we note that 2022 corresponds to t = 11, since 2022 is 11 years
after 2011.

P11 = 12, 000 + 750(11)

= 20, 250 elk

TRY IT If we estimated the population of trout in a pond to be 2200 in 2008 and 3500 in 2012,
construct a linear model to predict the population in 2017.

Notice the key to that last problem: by knowing the population at the beginning and at the
end, we can how much the population changes in a single year by dividing the total change by
the number of years that elapsed.

In the next example, we’ll look at data that is nearly linear, but not exactly. However, for
the purposes of making predictions, we’ll treat it as if it follows a linear trend (remember, in
the real world, data is messy). We’ll do exactly the same thing we just did in the previous
example; we’ll simply focus on the amount at the beginning and at the end, and divide the
total growth by the amount of time that passed.

https://www.youtube.com/watch?v=cpaNK4jbMkA&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=1
https://www.youtube.com/watch?v=cpaNK4jbMkA&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=1
http://hartleymath.com/versatilemath/tryit/#/growth-models--linear-growth-model-(trout-population)
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GASOLINE CONSUMPTION EXAMPLE 2

Gasoline consumption in the US has been increasing steadily. Data from 1995 to 2004
is shown below. Find a linear model for this data, and use it to predict consumption
in 2018. If the trend continues, when will consumption reach 200 billion gallons?

Year ’95 ’96 ’97 ’98 ’99 ’00 ’01 ’02 ’03 ’04
Consumption
(billions
of gallons)

116 118 119 123 125 126 128 131 133 136

If we plot this data, it appears to have an approximately linear relationship.
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One way to find a linear trend for data like this is a statistical technique known as
linear regression. We will see examples of how to use the calculator for regression later
in this section, and the chapter on Statistics will describe linear regression in more
detail.
For now, though, we’ll simply use the data from the first and last years to find the
average growth each year (the slope of the line). We could use the data from

any two years to calculate the
slope (and we would get
slightly different answers), but
a common convention is to use
the first and last years. You
should follow this convention
when answering the homework
questions.

Year Consumption
1995 116
2004 136

d = slope = change in consumption
change in time = 136− 116

2004− 1995 = 20
9

= 2.22 billion gallons per year

Now we can write our model (in billions of gallons):

Pt = 116 + 2.2t
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https://www.youtube.com/watch?v=QoOdfeLBN0o&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=2
https://www.youtube.com/watch?v=QoOdfeLBN0o&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=2
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We can use our model to make predictions about the future, using the simplifying
assumption that the previous trend continues unchanged.

• Predicting gas consumption in 2018, when t = 23:This example illustrates the
two main types of questions

that we often want to answer:

1. Predicting the value of what
we are measuring at a given

point in time.

2. Predicting the point in time
when the thing we are

measuring will reach a certain
value.

P23 = 116 + 2.2(23) = 166.6

Our model predicts that the US will consume 166.6 billion gallons of gasoline in
2018 if the current trend continues.

• Predicting when consumption reaches 200 billion gallons:

200 = 116 + 2.2t
84 = 2.2t

38.18 = t

This model predicts that gas consumption will reach 200 billion gallons about 38
years after 1995, or the year 2033.

TRY IT The number of stay-at-home fathers in Canada has been growing steadily at an ap-
proximately linear rate. Use the data from the table below to find an explicit formula
for the number of stay-at-home fathers and use it to predict the number in 2020. Use
1976 and 2010 to find the average rate of change.

Year 1976 1984 1991 2000 2010
Number of stay-at-
home fathers

20,610 28,725 43,530 47,665 53,555

Again, we understand that this model is not perfect; the US will most likely not consume
exactly 166.6 billion gallons of gas in 2018, but we expect consumption to be about that. In
practice, we’ll often make predictions and then compare them to actual measured results to
assess the accuracy of our model. A very simple linear model like this will likely have fairly
large error; more sophisticated models tend to have smaller errors.

Predicting Time
As we pointed out in the previous example, there are generally two questions that we’ll en-
counter with mathematical models like the ones in this chapter:

• At a given time, find the amount

• For a given amount, find the time it will take to reach that level

The first question is generally easier, simply because of how the formula is arranged:

Pt = P0 + dt

Since we know everything on the right-hand side of the equation in this case, we can plug it
all in and simply carry out the arithmetic; what we want to know is already isolated on the
left side.

It’s slightly more tricky to solve for t in the second question, because it requires some algebra
to rearrange the pieces of the formula so that t will be isolated on one side. This gets even
more difficult for more complicated models, like the ones in the rest of the chapter, because
the algebraic steps are more involved.

Another option: use a calculator

Although you should be able to carry out the algebraic steps, and it will likely be quicker to
do so with linear models, let’s see how to use the calculator to accomplish the same purpose.
What we’re about to see will work no matter which part of the equation we want to solve for,
so we will return to this method in each section in this chapter when we want to solve for t.

http://hartleymath.com/versatilemath/tryit/#/growth-models--stay-at-home-fathers
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The key to this method involves graphing both sides of an equation and using the intersect
option on a graphing calculator. If you have a TI-83 or 84 or similar, you can look under the
CALC menu, which you can find by pressing 2ND and TRACE :

Before diving into the details, let’s see why this works by going all the way back to the
opening example of this section: the marathon training program. Remember that we drew this
graph to represent the number of miles that you would run each week:
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Now, let’s ask this question: how long will it take to reach the goal of running 26 miles?
Notice that what this means on the graph is: when does that blue line reach a height of 26?
If we draw a horizontal line at 26, we can zero in on the point where the two lines cross (or
intersect) and trace downward to the x-axis to find the time when that intersection occurs.
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In other words, when we find the coordinates of the intersection point, the y-coordinate will
be the level we’re given to predict the time for, and the x-coordinate will be the time at which
that level is reached.

On the calculator, this means we have to graph two functions: one will be the model that
we have built (Pt = P0 + dt for linear models in this section, other formulas for later sections),
and the other will be a constant value, whatever value we want to know the corresponding time
for. Once we find the intersection, the x-coordinate will be the time value that we’re looking
for.

To illustrate how to use this method, we’ll continue to use the same example: remember
that the model we built was Pt = 3 + 0.5t, and we wanted to predict when the number of miles
would reach 26. Thus, we need to graph y1 = 3 + 0.5x and y2 = 26 on the calculator; note
that the calculator always uses x and y instead of t and Pt.
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Step 1: graph both functions

To begin, press the Y= button in the upper-left corner to open the graphing menu, then
enter the two functions as Y1 and Y2. Note that to enter X, use the button labeled X,T, θ, n

Step 2: zoom to see the intersection

When you press GRAPH you may see something like this:

Only one line is visible, because the window is too zoomed in to see the other. To zoom out,
you can press the ZOOM button and select one of the options, like 3. Zoom Out. If you
press the WINDOW button, though, you can manually set the boundaries of the window, and
if you have a sense of roughly where the intersection should occur, that’s usually the easiest
way to adjust the view so that you can see both lines.

In this case, we know that the upper end of the window needs to go up to at least 26, since
that is the y-coordinate of the intersection, so let’s use 30 as the upper limit. With a bit of
trial and error, we can find a reasonable upper limit on x as well; we’ll use 50 for this one.

If you press GRAPH again, you should see this:

We can now see the intersection point on the graph, but we have a bit more work to do to
find its coordinates.
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Step 3: find the intersection

Now if you press 2ND and TRACE to open the CALC menu and select the option labeled
5. intersect, you’ll see something like this:

What’s happening here? Without getting too specific, the way the calculator finds the
intersection point involves starting with an initial guess, and then searching nearby in both
directions to find the crossing point. This means it will ask where you want to start looking on
the first curve, where you want to start looking on the second curve, and where your overall
initial guess is. You can use the arrow keys to move the blinking cursor closer to the intersection
if you like, but for simple examples like the ones in this chapter, the calculator will find it even
if we don’t feed it a starting point that is close by.

In practice, this means that if you like, you can simple press ENTER three times to accept
the default starting values.

Once you do this, you should see the following:

At the bottom of the screen, you can see the coordinates of the intersection point. Notice
that the y-coordinate is no surprise; that’s based on the given number of miles that we were
trying to reach. The x-coordinate is the answer we were looking for, the value of t when we
reach 26 miles.

Linear Regression Using the Calculator
Usually when we build a model, we do so using data from the past to predict the future. In
most of the examples in this section, we drew a straight line by selecting the first and last
points and finding the slope that connected them.

There is another approach, using a statistical technique known as linear regression. We
will omit the details here, but a more thorough discussion can be found in the Statistics chapter.
For our purposes, we will simply see how to use a graphing calculator to find the equation of
a line that most closely fits the data we’re given.

Rather than simply using two points, linear regression takes all of the data points into ac-
count and builds a line of best fit; the principles needed to describe how this best-fit process
works require some statistics knowledge, so we will not discuss it further in this chapter.

We’ll use the gasoline consumption example to show how to use the calculator for this.
Recall that we were given the following data (and the resulting graph):

Year ’95 ’96 ’97 ’98 ’99 ’00 ’01 ’02 ’03 ’04
Consumption
(billions
of gallons)

116 118 119 123 125 126 128 131 133 136
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The model we built in that example was Pt = 116 + 2.2t; we’ll keep this handy to compare
it to the answer we get using regression.

Step 1: enter the data

First, we need to enter the data that we’re given (in full). To do this, press the STAT button;
the first menu that you will see should look like this:

Simply press ENTER to enter the Edit menu, where we can enter the data; first, you
should see the following (if there is data already there, simply use the arrow keys to move up
to the label of one of the lists, and press CLEAR ):

In list L1, enter the values for t. Notice that here we set 1995 as the initial year, or year 0,
so start with 0 and enter enough values to get to 2004 (year 9). In list L2, enter the values for
gasoline consumption.
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Step 2: calculate the regression equation

Now, to calculate the regression equation, press the STAT button again, and use the right
arrow key to move to the CALC menu. There are many options here, but the one we want at
the moment is 4: LinReg(ax+b). Notice that this means that we’ll receive answers for a and
b, and these will represent the slope and intercept, respectively.

If you select the linear regression option, you should see the following menu:

Since we entered the time values in L1 and the consumption values in L2, we don’t need to
change anything here, so simply scroll down to select Calculate and press ENTER , which
shows the results:

For now, all we’re interested in is the values of a and b; to put it in more familiar terms,
the equation of the regression model is

Pt = 115.7 + 2.19t

Compare this to the one we built by hand. Since this data was fairly linear, there isn’t
much difference between the two answers; if there were outliers (unusual values that deviate
significantly from the linear trend), there might be a greater difference.

In general, the manual method is easier and quicker to do, but this statistical method gives
more accurate results.
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Using Excel
We can also use Excel to calculate regression equations. To begin, enter the data as shown
(we’re using the same example as we did with the calculator, for comparison):

Next, we need to insert a scatterplot of these data points; select the Insert menu at the top
of the screen, then select the scatterplot option under the Charts section (select the first type
of scatterplot under that submenu).

This creates a graph similar to the one that we drew earlier for this same example; we could
add a title to the chart and the axes, but we won’t bother for this example.

To add a regression line, click on the plus symbol at the upper right (when the chart is
selected). One of the options is to add a trendline. If you check that box, the line will be
drawn, but by default, Excel won’t show the equation of the line, which is what we’re after, so
we need to select “More Options” after clicking on the arrow next to the trendline option.
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This brings up the following menu. Notice that there are different types of equations we
can use to model the data, including several that we’ll encounter later in the chapter. For now,
though, leave the linear option selected, but check the box at the bottom of the menu that
says “Display Equation on chart.”

This leads to the following:

The equation, as calculated by Excel, is

Pt = 115.65 + 2.1879t

which, after rounding, is identical to the one obtained by the calculator (this is no surprise,
since they’re using the same formulas).

When Good Models Go Bad
When predicting the future with mathematical models, it is crucial to keep in mind that few
trends continue indefinitely.

A BOY’S HEIGHT EXAMPLE 3

Suppose a four year old boy is currently 39 inches tall, and you are told to expect him
to grow 2.5 inches a year.

We can set up a growth model, with t = 0 corresponding to 4 years old.

Pt = 39 + 2.5t

At six years old (when t = 2), we would expect him to be

P2 = 44 inches tall,

but this model eventually breaks down. Certainly, we shouldn’t expect him to grow at
the same rate all his life. If he did, at age 50 he would be

P46 = 154 inches = 12.8 feet tall.

Of course, this boy will not grow at a constant rate, but rather experience growth spurts
and ultimately stop growing in his early 20s. But this example also illustrates that we should
check our model against common sense.

https://www.youtube.com/watch?v=7_wAlvsCyDc&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=3
https://www.youtube.com/watch?v=7_wAlvsCyDc&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=3
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Let’s look at another example that illustrates the need for a common sense check.

MARATHON TIMESEXAMPLE 4

The table and graph below show the record times for the marathon for men and women
from 1965 to 1980.

Year Men’s Times (min) Women’s Times (min)

1965 132
1966
1967 129.5 195
1968
1969 128.5
1970 129.5 183
1971 175
1972
1973 166
1974 129 163
1975 158
1976
1977 155
1978 129 152
1979 147
1980 129 145
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From this data, it looks like both sets of data are following a linear trend. If we use
the first and last data points to find the average rate of change for each, we get the
following linear models, using 1967 as t = 0:

Mt = 129.5− 0.2t
Wt = 195− 3.85t

According to these two linear models, we would predict that the women’s record would
beat the men’s record by 1985; however, in 1985, the men’s record was still 14 minutes
faster than the women’s. What happened here?

Since women began setting marathon records about 50 years later than men, in the
early years their progress was drastic, but eventually slowed down, and the trend was
not linear over the long run (wow, what a terrible pun).

It should be clear that this linear trend was misleading, since if we extrapolated this model
too far forward, we’d get ridiculous results. The model predicts, for instance, that women
would run the marathon in 1:20:00 in 1997 (a pace of about 20 mph, the speed of a roadrunner
or close to the top speed of Usain Bolt at full sprint), or that by 2017 they’d be running it in
2.5 minutes (around 630 mph).

The lesson is simple, and hopefully obvious: linear trends are usually only useful in the
short term; few phenomena follow linear trends over the long term. That is why we’ll examine
other types of models in the coming sections. However, keep this in mind, because we’ll find
that even those more sophisticated models have their limitations, and often they too break
down in the long term.

https://www.youtube.com/watch?v=3FeV7lvkATI&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=4
https://www.youtube.com/watch?v=3FeV7lvkATI&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=4
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Exercises 2.1

1. Marko currently has 20 tulips in his yard. Each year he
plants 5 more.

(a) Find a linear model of the form Pt = P0 +dt to describe
the number of tulips Marko has at a given point in time.

(b) How many tulips will Marko have in 7 years?

(c) When will Marko have 65 tulips?

2. Pam is a DJ. Every week she buys 3 new albums to add
to her collection. She currently owns 450 albums.

(a) Find a linear model of the form Pt = P0 +dt to describe
the number of albums Pam has at a given point in time.

(b) How many albums will Pam have in 11 weeks?

(c) When will Pam have 489 albums?

3. A store did $40,000 in sales in 2016, and $62,000 in 2018.

(a) Assuming the store’s sales are growing linearly, find the
growth rate d.

(b) Write a linear model to describe this store’s sales from
2016 onward.

(c) Predict the store’s sales in 2025.

(d) When do you expect the store’s sales to exceed
$100,000?

4. A small town had 340 homes in 2010, and by 2020, this
had grown to 375.

(a) Assuming the number of homes is growing linearly, find
the growth rate d.

(b) Write a linear model to describe the number of homes
in this town from 2010 onward.

(c) Predict how many homes there will be in this town in
2034.

(d) When do you expect the number of homes to exceed
500?

5. A population of beetles is growing according to a linear
growth model. Initially, there were 13 beetles, and 8 weeks
later, there were 42 beetles.

(a) Write a linear model to describe the number of beetles
over time, using weeks as the unit of time.

(b) How many beetles are there expected to be 14 weeks
after the initial point?

(c) When do you expect the number of beetles to exceed
70?

6. The number of streetlights in a town is growing linearly.
Four months ago there were 130 lights. Now there are 146
lights.

(a) Write a linear model to describe the number of street-
lights in the town over time, using months as the unit
of time.

(b) How many streetlights are expected a year from now
(not a year from the beginning)?

(c) When do you expect the number of streetlights to ex-
ceed 200?

7. In 1990, there were 112 nuclear power plants in the U.S.
By 2019, this number had fallen to 96.

(a) Write a linear model to describe the number of nuclear
power plants from 1990 onward.

(b) Using this linear model, predict the number of nuclear
power plants in the U.S. in 2030.

(c) When do you expect the number of nuclear power
plants to reach 80?

8. In 1990, approximately 1,820,000 violent crimes were re-
ported in the U.S. By 2019, this number had fallen to ap-
proximately 1,200,000.

(a) Write a linear model to describe the number of violent
crimes in the U.S. from 1990 onward.

(b) Using this linear model, predict the number of violent
crimes in 2040.

(c) When do you expect the number of violent crimes to
reach 1,000,000?

https://www.myopenmath.com/index.php
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9. The table below shows the average annual cost of health
insurance for a single individual, from 1999 to 2019, accord-
ing to the Kaiser Family Foundation.

Year Cost

1999 $2,196
2000 $2,471
2001 $2,689
2002 $3,083
2003 $3,383
2004 $3,695
2005 $4,024
2006 $4,242
2007 $4,479
2008 $4,704
2009 $4,824
2010 $5,049
2011 $5,429
2012 $5,615
2013 $5,884
2014 $6,025
2015 $6,251
2016 $6,435
2017 $6,690
2018 $6,896
2019 $7,186

(a) Using only the data from the first and last years, build
a linear model to describe the cost of individual health
insurance from 1999 onward.

(b) Using this linear model, predict the cost of insurance
in 2030.

(c) According to this model, when do you expect the cost
of individual insurance to reach $12,000?

(d) Using a calculator or spreadsheet program, build a lin-
ear regression model to describe the cost of individual
insurance from 1999 onward.

(e) Using the regression model, predict the cost of insur-
ance in 2030.

(f) According to the regression model, when do you expect
the cost of individual insurance to reach $12,000?

10. The table below shows the average annual cost of health
insurance for a family, from 1999 to 2019, according to the
Kaiser Family Foundation.

Year Cost

1999 $5,791
2000 $6,438
2001 $7,061
2002 $8,003
2003 $9,068
2004 $9,950
2005 $10,880
2006 $11,480
2007 $12,106
2008 $12,680
2009 $13,375
2010 $13,770
2011 $15,073
2012 $15,745
2013 $16,351
2014 $16,834
2015 $17,545
2016 $18,142
2017 $18,764
2018 $19,616
2019 $20,576

(a) Using only the data from the first and last years, build
a linear model to describe the cost of family health
insurance from 1999 onward.

(b) Using this linear model, predict the cost of insurance
in 2025.

(c) According to this model, when do you expect the cost
of family insurance to reach $30,000?

(d) Using a calculator or spreadsheet program, build a lin-
ear regression model to describe the cost of family in-
surance from 1999 onward.

(e) Using the regression model, predict the cost of insur-
ance in 2025.

(f) According to the regression model, when do you expect
the cost of family insurance to reach $30,000?
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SECTION 2.2 Quadratic Models

In reality, straight lines are rare; this is as true with data as it is with stone formations.
Real data hardly ever follows such a simple rule, but whenever we can, we like to use lines to
approximate real trends because straight lines are easy to work with.

However, as we found at the end of the previous section, linear models will not work in every
situation, and trying to force a linear trend on real data often leads to nonsensical results. For
the rest of this chapter, we’ll study other models–using slightly more complicated formulas–that
can be used when the data does not follow a linear trend.

Picking which model to use is a hard question, and this decision is usually based on looking
at a graph and looking for a pattern, or trying multiple models and seeing which gives the
best results. That kind of decision is largely beyond the scope of this chapter; we’ll focus on
learning some basic features of a few different models, and the questions in each section will
specify which kind of model to use.

We’ll discuss three types of non-linear models:

1. Quadratic Models

2. Exponential Models

3. Logistic Models

This section will focus on quadratic models, and the last two types will be the topics of the
remaining sections in this chapter.

Quadratic Models: Parabolas
The next time you use a water fountain, watch the path that the water follows. There’s a
certain elegance to this arch, and we have a special name for it: a parabola. Every time a
baseball player throws a ball, that ball’s path follows this same pattern. In fact, every time
anything is launched or thrown, it follows a parabolic arch.

It turns out that this shape comes from a simple mathematical operation: squaring. Yes,
that’s it; when you square numbers, this pattern emerges.

Of course, that’s not clear immediately, so let’s do a simple experiment: square the whole
numbers from 0 to 4, as well as the matching negative numbers. We can arrange our results
in a table like this:

x −4 −3 −2 −1 0 1 2 3 4

x2 16 9 4 1 0 1 4 9 16

Notice the symmetry in the results: when we square 2 and −2, for instance, we get the
same result, because multiplying two negative numbers results in a positive answer. Look at
the picture of the fountain in the margin; one of the main features of a parabola is its symmetry,
and we’re already starting to see that emerge.
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Just like we did in the previous section, let’s graph these results and see what visual pattern
we can observe.
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And if we connect the dots by filling in the results we would get if we applied this same rule
to non-whole numbers, what do we get?
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Look at that: we got exactly the same shape as the water rising and falling in the fountain
(although flipped upside-down). It’s amazing what beauty can come from such a simple math-
ematical rule: when you start squaring numbers, you find a parabolic curve, and it turns out
that this curve governs much of the motion we see around us every day.

Now, by comparing this graph with the picture of the fountain, we can observe that while
parabolas all have the same structure, there are differences in the exact paths. For instance,
some of the jets in the fountain are aimed higher than others, leading to taller, narrower
arches, while the lower jets create shorter, wider arches. And the graph shows a parabola that
is oriented in the opposite direction.

Where do these differences come from? It’s important to remember that the basic structure
of the parabola is generated by squaring the inputs (we used t in the previous section; these
are the values for which we want to make predictions) to get x2 (or t2). A more general version
of this function (and the formula we’ll use when we start building quadratic models) is

f(x) = ax2 + bx+ c

or, in a form that is more similar to what we used in the last section,

Pt = at2 + bt+ c.

Notice that if we set a = 1, b = 0, and c = 0, this simplifies to f(x) = x2, which is the one
we graphed above (the notation f(x) = simply means that we’re thinking of this as a function,
a rule that takes inputs x and yields outputs, as we did in the table above).
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When we start changing the values of a, b, and c, that’s when the variations among different
parabolic shapes start to appear. Here are a few examples:
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There’s no need to study this chart in much detail, but we can quickly gather a few obser-
vations by comparing the values of a, b, and c:

• When a changes, the shape of the curve changes. More specifically,

– When a is positive, the curve opens upward; when a is negative, the curve opens
downward.

– Larger values of a (in magnitude) make the curve narrower (taller); smaller values
of a make the curve wider (shorter).

• When b and c change, the location of the curve changes.

– Increasing c moves the curve upward; decreasing c moves it downward.
– The effect of b is harder to see, but it, in combination with a and c, moves the curve

both vertically and horizontally.

The most important takeaway from this comparison is probably the effect of a. When we
start fitting parabolas to data, the value of a, the number multiplied by x2 or t2, will tell us
the direction of the curve, as well as something about how steep the curve is.

With this background, we’re ready to state the formula that we can use to describe data
with a quadratic model.

Quadratic Growth Models

The following formula can be used to make predictions when data follows an approxi-
mately parabolic trend:

Pt = at2 + bt+ c

The values of a, b, and c control the shape and location of the curve.

Notice that we use t in the formula, to match the formulas in the other sections in this
chapter, but we’ll use x interchangeably with t in the problems we do, since we’ll use calculators
and other technology to solve these problems, and those tools generally use x as the variable.
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Using the Calculator

PLOTTING POINTS ON A CALCULATOREXAMPLE 1

According to the U.S. Census Bureau, the number of Americans over the age of 100
is increasing. The Census Bureau reported the following data, where the number of
people is measured in the thousands:

Year Number
(thousands)

1994 50
1996 56
1998 65
2000 75
2002 94
2004 110

Graph this data using a graphing calculator.

Solution To begin, we need to enter the data, using the same steps outlined in the previous
section. Press the STAT button to enter the statistics menu, press ENTER to
enter the data entry menu, and add the values in the table above to the table in the
calculator. Use the same order in the columns.

Note: order of the columns This is discussed more in the Statistics chapter, but
the first column generally refers to the variable that we use to predict the other. In
this case, we can predict the number of Americans over the age of 100 by picking a
given year. We would be less likely to predict what year we’re describing based on the
number of Americans over the age of 100.

We’ll use 1994 as the beginning of our experiment, so that will correspond to year 0.
Once you enter the data, you should see the following.

To graph this data, we need to use the STAT PLOT option, which is the 2ND option
on the Y= button, so to access it, press 2ND followed by Y= . This opens the
following menu.

Pressing ENTER opens the menu for the first plot. In order to display a statistics
plot, you must turn it on (and turn it off later if you’d like to only graph a function).

https://www.youtube.com/watch?v=N97Qj97Siec&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=5
https://www.youtube.com/watch?v=N97Qj97Siec&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=5
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There are various types of statistics plots that the calculator can draw, but the first
option (the one selected as shown) is a scatterplot, which is what we want. Leave the
rest of the options as they are (note the order of the data columns).

We must zoom the window properly to ensure that we can see the data as it is graphed;
the values shown below work well.

Now, if you press GRAPH you should see the following:

Notice that the shape is similar to the parabolas we have seen drawn, or at least a
portion of one.

TRY ITUse a graphing calculator to plot the data below, and see if it follows an approximately
quadratic trend.

x y
0.9 2.5
1.3 4.1
1.6 5.1
2.1 7.5
2.5 9.8
3.2 14.3
3.6 18.1
4.2 23.0

The next question, of course, is how to fit a quadratic model to data like this. Specifically,
this means finding values for a, b, and c that will make the resulting curve match the data as
closely as possible.

Unlike with linear models, we won’t do this manually, since the algebra necessary is more
complicated than we’d like to tackle here. Thus, we will simply take advantage of the quadratic
regression option on the calculator, which is labeled QuadReg.

This can be found in the same menu as the linear regression function, and the process is
very similar as well.
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FITTING A QUADRATIC MODEL ON A CALCULATOREXAMPLE 2

Using the same census data as in the previous example, find a quadratic model that
can be used to predict how many Americans will be over the age of 100 in a given year.

Solution First, we must have the data entered, so if you don’t have the data still in your
calculator, follow the first step of the previous example to enter it.

Next, press the STAT button and use the right arrow button to move to the CALC
menu. There you should find an option labeled 5: QuadReg that will perform quadratic
regression.

If you entered the year in the first column and the number of people in the second
column, you won’t have to change anything on the next menu. Simply scroll down to
Calculate, and press ENTER

The results are shown below.

Based on the values of a, b, and c given, we get the following model:

Pt = 0.40t2 + 2.04t+ 50.07

TRY IT Use a graphing calculator to find a quadratic model for the data given below.

x y
0.9 2.5
1.3 4.1
1.6 5.1
2.1 7.5
2.5 9.8
3.2 14.3
3.6 18.1
4.2 23.0

https://www.youtube.com/watch?v=mFMqHx1lmEE&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=6
https://www.youtube.com/watch?v=mFMqHx1lmEE&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=6
http://hartleymath.com/versatilemath/tryit/#/growth-models--quadratic-regression
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MAKING PREDICTIONS WITH A QUADRATIC MODEL EXAMPLE 3

A study designed to track the gas mileage of a car based on its speed found the following
results.

Speed (mph) Mileage (mpg)

15 22.3
20 25.5
25 27.5
30 29.0
35 28.8
40 30.0
45 29.9
50 30.2
55 30.4
60 28.8
65 27.4
70 25.3
75 23.3

(a) Use a graphing calculator to plot the data.

(b) Find a quadratic model that best fits the data.

(c) Based on this model, what gas mileage should be expected at 62 miles per hour?
At 90 miles per hour? Which of these predictions is likely to be more reliable?

(d) Based on the model, what speeds are likely to produce a mileage of 28 miles per
gallon?

Solution

(a) Follow the steps outlined in the first example, and you should see the graph shown
below.

(b) Under the STAT −→ CALC menu, use the QuadReg option, leaving all the options
unchanged:

The model found by the calculator is

Pt = −0.008t2 + 0.746t+ 13.469

https://www.youtube.com/watch?v=FemfjoeQ0hk&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=7
https://www.youtube.com/watch?v=FemfjoeQ0hk&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=7
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(c) To make predictions for the mileage (Pt) based on speed (t), simply substitute
those values into the model:

• At 62 mph: Pt = −0.008(62)2 + 0.746(62) + 13.469 = 28.97 mpg

• At 90 mph: Pt = −0.008(90)2 + 0.746(90) + 13.469 = 15.81 mpg

Which of these seems more likely to be reliable? The main difference between
the two is that 62 mph falls within the range of speeds for which we have data,
while 90 mph is faster than anything that was tested. Thus, we can call the first
prediction (at 62 mph) an interpolation and the second an extrapolation. In
general, interpolations are more reliable, because there may be effects we haven’t
observed outside the range we tested for.

(d) To find the speeds that match a mileage of 28 mpg, we need to solve

28 = −0.008t2 + 0.746t+ 13.469

Rather than doing this algebraically, we can use the same tool we used for this
kind of problem in the last section: graph both sides of the equation and use the
intersect tool on the calculator. Notice that there are two intersections this time,
so we need to move the cursor close to the second intersection when we want to
find that point.

The two speeds that we would expect to produce a gas mileage of 28 mpg are
27.7 mph and 65.5 mph

TRY IT Use the data and model from the previous TRY IT example.

(a) Predict the values of y if x = 3 and if x = 9. Which prediction is more likely to
be reliable?

(b) Find the value(s) of x that match y = 10 according to that model.

Using Excel
The process for using Excel with quadratic models is almost identical to the one shown in the
last section for linear models. To illustrate, we’ll use the dataset from the last example, with
the relationship between speed and gas mileage.

First, record the data and insert a scatterplot, as before.

http://hartleymath.com/versatilemath/tryit/#/growth-models--quadratic-regression
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Next, click the plus sign in the upper right corner of the chart, and at the bottom of the
menu, click the arrow next to the “Trendline” option and select “More Options...”

This time, instead of selecting the linear option, select “Polynomial” with order 2 (that’s
the squared part of a quadratic model). As always, select the option to display the equation
on the chart.
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Exercises 2.2

1. The table below shows the distance that a baseball travels
after being hit at various angles.

Angle (degrees) Distance (feet)

10 115.6
15 157.2
20 189.2
24 220.8
30 253.8
34 269.2
40 284.8
45 285.0
48 277.4
50 269.2
58 244.2
60 231.4
64 180.4

(a) Use a graphing calculator or spreadsheet program to
find a quadratic model that best fits this data, using
angle as t and distance as Pt.

(b) Based on this model, what distance is expected for a
ball hit at 55◦?

(c) What distance is expected for a ball hit at 75◦?

(d) Which of the two previous predictions is likely to be
more reliable?

(e) What is the smallest angle that you expect to yield a
distance of 200 feet?

2. A ball is dropped from a height of a little over 5 feet, and
the height is measured at small intervals. The table below
shows the results.

Time (seconds) Height (feet)

0.00 5.235
0.04 5.160
0.08 5.027
0.12 4.851
0.16 4.631
0.20 4.357
0.24 4.030
0.28 3.655
0.32 3.234
0.36 2.769
0.40 2.258
0.44 1.635

(a) Use a graphing calculator or spreadsheet program to
find a quadratic model that best fits this data, using
time as t and height as Pt.

(b) Based on this model, what height is expected after 0.30
seconds?

(c) What height is expected after 0.52 seconds?

(d) Which of the two previous predictions is likely to be
more reliable?

(e) When do you expect the height of the ball to be 1 foot?

3. The table below shows the amount spent on movie theater
tickets in the U.S. from 1997 to 2003.

Year Spending (billions of dollars)

1997 6.3
1998 6.9
1999 7.9
2000 8.6
2001 9.0
2002 9.6
2003 9.9

(a) Use a graphing calculator or spreadsheet program to
find a quadratic model that best fits the data. Let t
represent the year, with t = 0 in 1997.

(b) Based on this model, how much would you expect to
be spent on movie theater tickets in 2008?

(c) When would you expect movie theater ticket expendi-
ture to fall to $5 billion?

4. The table below shows the number of FM radio stations
in the U.S. from 1997 to 2003.

Year Stations

1997 5542
1998 5662
1999 5766
2000 5892
2001 6051
2002 6161
2003 6207

(a) Use a graphing calculator or spreadsheet program to
find a quadratic model that best fits the data. Let t
represent the year, with t = 0 in 1997.

(b) Based on this model, how many FM stations would you
expect there to be in 2010?

(c) When would you expect the number of stations to first
reach 6500?

https://www.myopenmath.com/index.php
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5. The table below shows college textbook sales in the U.S.
from 2000 to 2005.

Year Textbook Sales (millions of dollars)

2000 4265
2001 4571
2002 4899
2003 5086
2004 5479
2005 5703

(a) Use a graphing calculator or spreadsheet program to
find a quadratic model that best fits the data. Let t
represent the year, with t = 0 in 2000.

(b) Based on this model, how much would you expect to
be spent on college textbooks in 2015?

(c) When would you expect textbook sales to first reach
$7 billion ($7000 million)?

6. The table below shows the average amount of time spent
per person on entertainment per year from 2000 to 2005.

Year Hours

2000 3492
2001 3540
2002 3606
2003 3663
2004 3757
2005 3809

(a) Use a graphing calculator or spreadsheet program to
find a quadratic model that best fits the data. Let t
represent the year, with t = 0 in 2000.

(b) Based on this model, how many hours would you expect
the average person to spend on entertainment in 2012?

(c) When would you expect the average amount of enter-
tainment time to reach 4000?
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SECTION 2.3 Exponential Models

In essence, linear models start with a simple assumption: growth happens based on adding
a fixed amount over and over again. In this section, we’ll investigate exponential models, which
are the result of a different assumption, that growth happens by adding a percentage of the
current total. In financial terms, this is the difference between simple interest (linear) and
compound interest (exponential).

Many of the examples in this section deal with population growth, because this is a decent
assumption to start with. Since the number of offspring in one generation depends on the
number of parents in the previous generation, it makes sense that as the population grows, the
number of offspring grows as well.

For instance, suppose that in order to predict the population of geese in a particular area,
you assume that the number of geese will increase by 10% each year (accounting for births
and deaths). According to this model, an initial population of 1000 geese would grow to 1100
geese at the end of one year, and the following year, 10% of 1100 would be added, making the
growth speed up.

Notice that adding 10% to the total is the same as multiplying by 110%, or 1.1:

1000 + 1000(0.1) = 1000(1 + 0.1) = 1000(1.1)

We can track this for a few years, multiplying each year’s population by 1.1 to get the next
year’s result, and watch a formula emerge.

Year 0: P0 = 1000
Year 1: P1 = 1000(1.1)
Year 2: P2 = 1000(1.1)(1.1)
Year 3: P3 = 1000(1.1)(1.1)(1.1)

It doesn’t take long to recognize that each year’s population will be 1000 multiplied by 1.1
over and over again. The number of times that 1.1 is multiplied is the same as the number of
years that have elapsed since we started tracking the population.

We can write this more compactly by taking advantage of exponential notation, since for
instance, 1000(1.1)(1.1)(1.1) = 1000(1.1)3.

In our example, then, we could predict the population of geese in any year using the following
formula:

Pt = 1000(1.1)t

The growth rate is 10%, and 1.10 is the growth multiplier. Each year’s population is
1.10 times the previous year’s population.

Year Population Growth from Previous Year
0 1000
1 1100 100
2 1210 110
3 1331 121
4 1464 133
5 1611 147
6 1772 161
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Notice that there is a constant percentage growth, so as the population increases, the number
by which it grows gets larger each year.

If we plot these first few values, the graph is not quite linear, but it’s not that far from
a linear plot. Because of this, in the short term, linear models can approximate exponential
models, even if it isn’t a perfect fit.
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As we begin to project further into the future, though, the model clearly deviates from a
linear trend:
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If the population had been growing linearly by 100 geese each year, the population at the
end of 30 years would have only been 4,000 instead of nearly 18,000 under the exponential
model. Most of this growth occurred in the second half; this is typical of exponential growth.
Since the growth from one year to another depends on the size of the population, it grows
much faster near the end, and the growth begins to snowball.
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Exponential Growth

If a quantity starts at size P0 and grows by R% (written as a decimal, r) every time
period, then the quantity after t time periods is given by

Pt = P0(1 + r)t

The growth rate is r, and the growth multiplier is 1 + r.

If r is negative, then instead of exponential growth there is exponential decay.

The growth multiplier is the common ratio between terms, and it can be used to recognize
exponential growth from data, just like a common difference between terms can be used to
recognize linear growth.

Year Population Ratio to Previous Year

0 1000
1 1100 1.1
2 1210 1.1
3 1331 1.1
4 1464 1.1
5 1611 1.1
6 1772 1.1

Picking the Model Type How do we know whether to use a linear, quadratic, or expo-
nential model (or some other type)? This is not a simple question, so in this chapter you will
always be told what type of model to use.

However, we can look briefly at a simple example to see how this question may be answered.
There are statistical tools that can be used to pick a model, but for now, we’ll restrict ourselves
to simply inspecting the data and doing a quick visual check.

First, to distinguish between linear and exponential models, calculate the difference between
each year’s population and the next, and the ratio of the two populations. If the difference
is roughly consistent, try a linear model. If, instead, the ratio is relatively unchanged, try
an exponential model. Quadratic models are not as easy to observe this way, but in general,
quadratic models fall somewhere between the other two.

Then, draw a scatterplot of the data and see if you can observe a trend. The more data
you have available, the easier this is. Of course, this is not foolproof. For instance, consider
the data graphed below.

This data doesn’t necessarily look linear, but we could certainly find a linear model to
approximate it, and it wouldn’t be completely ridiculous.

We can compare the three types of models, and plot the results against the data:

Linear Quadratic Exponential

It looks like the quadratic and exponential models track the data better than the linear one,
but between the two leaders, which is better? There’s no clear answer, so we could probably
pick either one and get decent results. In fact, trying out a bunch of models in the hopes
of finding a perfect one can lead to overfitting, which happens when our entire focus is on
explaining the data from the past, rather than being able to predict future results.
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FREDERICK POPULATION EXAMPLE 1

The population of Frederick County grew from 239,520 in 2012 to 241,409 in 2013, a
growth of about 0.8%. If this growth rate continues, what is the population of Frederick
County expected to be in 2025?

If r = 0.008, we can use the exponential growth formula to predict the population in
2025. To do so, however, we need to pick a year to be year 0. Since we’re given the
population in 2012 and 2013, we can use either one, but we’ll choose 2013, so 2025 will
be year 12.

P12 = P0(1 + r)t

= 241, 409(1 + 0.008)12

= 265, 632

We expect the population of Frederick County to reach 265,632 by 2025.

TRY IT

India is the second most populous country in
the world, with a population of about 1.252
billion in 2013. The population is growing
by about 1.21% each year.

If this trend continues, what is India’s popu-
lation expected to grow to by 2030?

Using Your Calculator: Exponents

To evaluate expressions like 1.00812, we’ll use the ex-
ponent function on a calculator rather than multiply-
ing 1.008 by itself 12 times. The exponent function is
usually labeled like one of the following:

∧ yx xy

To evaluate 1.00812, we’d type 1.008 ∧ 12 or
1.008 yx 12. Try it and make sure that you get an
answer around 1.100338694.

https://www.youtube.com/watch?v=NHLi7ekPSPM&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=8
https://www.youtube.com/watch?v=NHLi7ekPSPM&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=8
http://hartleymath.com/versatilemath/tryit/#/growth-models--population-of-india
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TUITION PREDICTIONEXAMPLE 2

A friend is using the equation

Pt = 4600(1.072)t

to predict the annual tuition at a local college. She says that the formula is based on
years after 2010. What does this equation tell us?

Solution In this equation, P0 = 4600, which is the initial tuition, so we infer that the tuition in
2010 is $4600.

The growth multiplier is 1.072, so the growth rate is 0.072 or 7.2%. We expect tuition
to grow by 7.2% each year.

In reality, we don’t generally start a study already knowing the growth rate, as we did in
the last few examples. Instead, we’ll start with historical data, and we need to know how to
use that to discover the growth rate.

We’ll do this in a similar way to what we did in the section on Linear Models. If you
remember, in that section, we had two ways to find the linear growth rate:

• Use two points from the data set (by default, the first and last points) to calculate the
growth rate manually; this requires some algebra.

• Use all the points in the data set; use the calculator for this, since the details are complex.

With quadratic models, we defaulted to the second option and avoided the manual option
altogether. However, we will see one example of finding r manually here, simply to see that it
is doable. The algebra is a bit more complicated than it was for linear models, but still within
grasp.

Finding the Growth Rate Manually

For a simple example, suppose that we knew that the population grew from 100 to 200 in
5 years. We can call 100 the initial population:

Pt = 100(1 + r)t

The key is that we know a value of t and the corresponding population, Pt. If we substitute
these into the equation, there will only be one unknown, r, and we can solve for it:

200 = 100(1 + r)5

The steps to solve for r may be hard to follow at first, but you can use the exact same steps
any time you need to solve one of these problems manually.

Remember that to solve an equation, we need to strip away everything except the piece
we want. Here, we want to extract r, so we need to remove everything around it by undoing
whatever operations apply. This also gives us an idea of the order, since we need to undo oper-
ations in the opposite order that we would simplify them according to PEMDAS (parentheses,
exponents, multiplication, division, addition, subtraction).

Notice what’s happening to r: it is added to 1 inside parentheses; since parentheses come
first in the order of operations, we’ll deal with this last as we solve for r. Next, this is raised
to the fifth power, so we’ll need to undo this second-to-last. Finally, the result is multiplied by
100, so we’ll start by undoing that. Here’s our process:

1. Undo multiplication by 100: divide both sides by 100.

2. Undo raising to the 5th power: take the 5th root of both sides.

3. Undo addition to 1: subtract 1 from both sides.

That second step is the one that may be new to you, and it’s likely the step that will give
you the most trouble.

https://www.youtube.com/watch?v=_u9RlZX_BkI&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=9
https://www.youtube.com/watch?v=_u9RlZX_BkI&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=9
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Let’s see this in action.

CARBON DIOXIDE EMISSIONS EXAMPLE 3

In 1990, the residential energy use in the US was responsible for 962 million metric tons
of carbon dioxide emissions. By the year 2000, that number had risen to 1182 million
metric tons. If the emissions grow exponentially and continue at the same rate, what
will the emissions grow to by 2050?

The twist in this problem is that the growth rate is not explicitly given, so we’ll have
to find it before we can make our prediction.

We will let 1990 correspond to year 0, so 2000 is year 10.

Year Emissions (million tons)

0 962
10 1182

We can put this information into the exponential growth model:

P10 = P0(1 + r)10

1182 = 962(1 + r)10

Now we need to solve for r:
1182 = 962(1 + r)10

1182
962 = (1 + r)10 Divide both sides by 962

10

√
1182
962 = 1 + r Take the 10th root of both sides

10

√
1182
962 − 1 = r Subtract 1 from both sides

r = 10

√
1182
962 − 1 = 0.0208 = 2.08%

So if the emissions are growing exponentially, they are growing by about 2.08% per
year. We can use this to predict the emissions in 2050, using 1990 as year 0:

P60 = 962(1 + 0.0208)60 = 2208.4 million metric tons of CO2 in 2050

TRY ITThe number of users on a social networking site was 45,000 in February when they offi-
cially went public, and grew to 60,000 by October. If the site is growing exponentially
and growth continues at the same rate, how many users should they expect two years
after they went public?

Rounding: If we had rounded the growth rate to 2.1%, our calculation for the emissions in
2050 would have been 3347. Rounding to 2% would have given a result of 3156. A very small
difference in the growth rate gets magnified greatly in exponential growth. Thus, round the
growth rate as little as possible, keeping at least three significant digits (numbers after any
leading zeros). For instance, 0.41624 could be reasonably rounded to 0.416, and a growth rate
of 0.001027 could be rounded to 0.00103.

Another note: Here we used two points to build an exponential model. If all we have is two
data points, there’s no reason necessarily to use an exponential model; a linear or quadratic
model can fit two points just as well. This only makes sense when we have prior knowledge
that convinces us that the growth in this instance will be exponential (like with population or
things that are closely linked to it, such as pollution).

https://www.youtube.com/watch?v=2wtJ_T3_e7o&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=10
https://www.youtube.com/watch?v=2wtJ_T3_e7o&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=10
http://hartleymath.com/versatilemath/tryit/#/growth-models--social-media-users
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Using Your Calculator: Roots

In the previous example, we had to calculate the 10th root of a number. Many scientific
calculators have a button for general roots that looks like:

n
√

x
√ y

√
x

To evaluate the 3rd root of 8, for example, we’d type either 3 n
√ 8 or 8 n

√ 3,
depending on the calculator. Try it on yours to see—you should get 2.

If you can’t find a general root button, you can use the property of exponents that

n
√
a = a1/n.

To compute 3√8, then, you could use the exponent key on your calculator to evaluate
81/3. Make sure that you use parentheses to preserve order of operations:

8 yx ( 1 ÷ 3 )

Finding the Growth Rate Using a Calculator
We can use the calculator for an example like the last one, without even resorting to regression
(which we’ll do a bit later). Remember that we used the intersect tool to solve for t in earlier
models; we can do the same here to solve for r.

All we need is to graph both sides of the equation, using x instead of r:

Then use the intersect feature (press 2ND TRACE to access the menu). Note that in
order to visualize the intersection, we set the window for x values to be from 0 to 0.05 (since
the growth rate is somewhere below 5% in this example) and y values between 900 and 1200.
It may take some trial and error to get the window right, but this is not a crucial step of the
process; the calculator can find an intersection even if it isn’t visible.

Notice that the value the calculator gives for x is what we were looking for, since we used
x to represent r: the growth rate is 2.08%, just as we found manually.

Now that you know how to do this, try going back to the first example, with the population
of Frederick County, and try to calculate the growth rate that’s given using either manual
method or the calculator (or both, for practice).
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Solving for Time
There’s nothing new to say about solving for time using the calculator; we’ve already done this
with the previous models in earlier sections, and we just used the same procedure to solve for
the growth rate. However, we’ll include an example here, just to remind you how this works.

SOLVING AN EXPONENTIAL MODEL FOR TIME EXAMPLE 4

In the first example, we modeled the population growth of Frederick County from 2013
onward using the following equation:

Pt = 241, 409(1 + 0.008)t

Using this model, predict when the population will reach 400,000 people.

SolutionFirst, let’s draw a graph to estimate the answer (an estimate like this may be all we
need in some cases).
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We can tell that the answer will be somewhere between 60 and 65 years after 2013.
If we pick 63 as a reasonable guess, that means we expect the population to reach
400,000 around the year 2076.

To get a more precise guess (but remember, this is still an estimate, so there’s no
guarantee it will be more accurate than our first one), we can plot the model as well
as the horizontal line at 400,000 and find their intersection:

Notice that the intersection occurs around x = 63.4, so our initial guess of 63 was
pretty close. Thus, we’ll stick with 2076 as the year that we predict the population will
reach 400,000.

TRY ITUsing the carbon emissions model from Example 3, predict when the emissions will
reach 1500 million metric tons of carbon dioxide.

https://www.youtube.com/watch?v=7uKfX9Uap0w&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=11
https://www.youtube.com/watch?v=7uKfX9Uap0w&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=11
http://hartleymath.com/versatilemath/tryit/#/growth-models--carbon-emissions


116 CHAPTER 2 Growth Models

Exponential Regression
If we want to use more than two points to find an exponential model, we need to turn to the
calculator. Thankfully, since we’ve already done linear and quadratic regression, there’s not
much to add here. Exponential regression can be found in the same menu, labeled 0: ExpReg.
Press the STAT button, then scroll to the right to the CALC menu:

The rest of the steps are familiar; start by entering data (with time in the first column
and population in the second column), then access the ExpReg function, and leave the default
options alone.

EXPONENTIAL REGRESSIONEXAMPLE 5

Build an exponential population model for the U.S. using data from 2005 to 2019.

Solution We need to gather some data first; a quick Internet search yields the following popula-
tion values:

Year Population (in millions)

2005 295.5
2006 298.4
2007 301.2
2008 304.1
2009 306.8
2010 309.3
2011 311.6
2012 313.9
2013 316.1
2014 318.4
2015 320.7
2016 323.1
2017 325.1
2018 327.2
2019 328.2

Enter this into the calculator, using 2005 as year 0 (so 2019 will correspond to year
14), and use the exponential regression solver.

The exponential model is
Pt = 297(1.0076)t

which means that the growth rate is 0.76%. We could then use this model to make
predictions, as we’ve done in the last few examples.

TRY IT Pick another country, and build an exponential population model using data from the
same years.

https://www.youtube.com/watch?v=0dJtDjAWn6w&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=12
https://www.youtube.com/watch?v=0dJtDjAWn6w&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=12
http://hartleymath.com/versatilemath/tryit/#/growth-models--population-of-brazil
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Using Excel
We’ve used Excel to build regression equations for linear and quadratic models; using the same
process, you’ll notice an option for an exponential model. We could do it that way; however,
the form that Excel gives for the exponential model uses the natural base e, which we haven’t
addressed in this section. To avoid confusion, we’ll use a different process to get a more familiar
form; there’s a built-in formula called LOGEST, which takes a range of y-values and a range of
x-values, in that order, and returns an exponential model in the form y = a(b)x, just like the
graphing calculator.

First, record the data and insert a scatterplot, as before.

Next, select a cell (A24 on the example spreadsheet) and enter the formula

=LOGEST(B4:B18,A4:A18)

This selects the values in the second column as y and the first column as x; the output is shown
below.

Notice that the output of the formula places the answer for the base of the exponent in the
selected cell, and the answer for the initial population in the next cell to the right.

The model given here is
Pt = 297(1.0076)t

which is identical to the one from the graphing calculator.
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Exercises 2.3

In problems 1–4, use a calculator to solve for the unknown variable, x or t.

1. 10x = 5 2. 7t = 100 3. 4(10x) = 9 4. 22(1.065)0.05t = 37

5. The population of the District of Columbia was approx-
imately 572,000 in 2000, and has been growing at a rate of
about 1.15%.

(a) Write an exponential model of the form Pt = P0(1+r)t

to describe the population of DC from 2000 onward.

(b) If this trend continues, what will DC’s population be
in 2025?

(c) When does this model predict that DC’s population
will reach 800,000?

6. Baltimore’s population in 2010 was approximately
620,000, and has been decreasing at a rate of about 0.5%
per year.

(a) Write an exponential model of the form Pt = P0(1 +
r)t to describe the population of Baltimore from 2010
onward.

(b) If this trend continues, what will Baltimore’s popula-
tion be in 2030?

(c) When does this model predict that Baltimore’s popu-
lation will reach 500,000?

7. Diseases tend to spread exponentially. In the early days
of AIDS, the growth rate was around 190%. In 1983, about
1700 people in the US died of AIDS. If the trend had con-
tinued unchecked, how many people would have died from
AIDS in 1990?

8. The population of the world in 1987 was 5 billion and the
annual growth rate was estimated at 2 percent. If the world
population followed an exponential growth model, find the
projected world population in 2015.

9. The population of Maryland was 5.17 million in 1999,
and it grew to 6.05 million in 2019.

(a) Assuming that the population is growing exponentially,
find the growth rate r for Maryland’s population.

(b) Write an exponential model to describe the population
of Maryland from 1999 onward.

(c) What is Maryland’s population expected to be in 2030?

(d) When do you expect that Maryland’s population will
reach 8 million?

10. The population of Virginia was 6.87 million in 1999, and
it grew to 8.54 million in 2019.

(a) Assuming that the population is growing exponentially,
find the growth rate r for Virginia’s population.

(b) Write an exponential model to describe the population
of Virginia from 1999 onward.

(c) What is Virginia’s population expected to be in 2022?

(d) When do you expect that Virginia’s population will
reach 10 million?

11. A bacteria culture is started with 300 bacteria. Af-
ter 4 hours, the population has grown to 500 bacteria. If
the population grows exponentially according to the formula
Pt = P0(1 + r)t,

(a) Find the growth rate r and write the full formula.

(b) If this trend continues, how many bacteria will there
be in one day?

(c) How long will it take for this culture to triple in size?

12. A native wolf species has been reintroduced into a na-
tional forest. Originally 200 wolves were transplanted, and
after 3 years, the population had grown to 270 wolves. If
the population grows exponentially according to the formula
Pt = P0(1 + r)t,

(a) Find the growth rate r and write the full formula.

(b) If this trend continues, how many wolves will there be
in ten years?

(c) If this trend continues, how long will it take the wolf
population to double?

13. In 2009, the average compensation for CEOs in the U.S.
was approximately $10,800,000, and by 2016, this had risen
to about $12,800,000. By comparison, the average compen-
sation for workers was $54,700 in 2009 and $55,800 in 2016.
Assume that both values are growing according to an expo-
nential model. Find the growth rate for both salaries; which
is higher?

14. In 2008, approximately 131 million people voted in the
U.S. general election, compared to about 139 million people
in 2016. The total population of the U.S. was 304 million
in 2008 and 323 million in 2016. Assume that both levels
are growing exponentially. Find the growth rate for both
populations; which is higher?

https://www.myopenmath.com/index.php
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15. The table below shows the population of Canada from
2010 to 2019.

Year Population (millions)

2010 34.0
2011 33.5
2012 34.7
2013 35.1
2014 35.4
2015 35.7
2016 35.1
2017 36.5
2018 37.1
2019 37.6

(a) Use a graphing calculator or spreadsheet program to
build an exponential regression model, letting t = 0 in
2010.

(b) What does this model predict that the population of
Canada will be in 2035?

(c) When does this model predict that Canada’s popula-
tion will reach 40 million?

16. The table below shows the population of Mexico from
2010 to 2019.

Year Population (millions)

2010 114.1
2011 115.7
2012 117.3
2013 118.8
2014 120.4
2015 121.9
2016 123.3
2017 124.8
2018 126.2
2019 127.6

(a) Use a graphing calculator or spreadsheet program to
build an exponential regression model, letting t = 0 in
2010.

(b) What does this model predict that the population of
Mexico will be in 2040?

(c) When does this model predict that Mexico’s population
will reach 145 million?
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SECTION 2.4 Logistic Models

There’s an old legend about the inventor of chess, who, when he was asked by the ruler
what reward he desired for his invention, told the ruler to simply pay him in rice. In fact, he
said, the ruler could simply place one grain of rice on the first square of a chessboard, followed
by two grains of rice on the next square, and so on, doubling each time. Surprised by how little
the inventor requested, the ruler agreed, and began adding rice to the board.

He quickly ran into a problem, though. By the time he reached the 21st square, he had to
deliver over a million grains of rice, and by the 31st square, it was over a billion squares. He
called in his best mathematicians, and to his horror, they informed the ruler that if he kept up
his side of the bargain, he would have to give the inventor a total of 18,446,774,073,709,551,615
grains of rice (about 1000 times the amount of rice harvested worldwide in a modern year).

This exposes a flaw in using exponential models for population growth. Although doubling
at every step corresponds to a 200% growth rate, even more modest rates exhibit the same
behavior when observed over a long enough time: exponential models grow without bound,
and they grow faster and faster over time.

Limited Resources
In 1950, the world population was 2.53 billion, and it grew to 5.32 billion by 1990, 40 years
later. We can use these two data points to build an exponential model that predicts that t
years from 1950, the world population in billions will be

Pt = 2.53(1.0188t)

Let’s test the model; let t = 55, for example, corresponding to the year 2005. The actual
population in 2005 was 6.51 billion, and the model predicts that the population would be 7.03
billion. Not perfect, but not terrible either.

However, what about 2015? The model predicts 8.47 billion, and the actual population was
only 7.32 billion. In other words, the model is getting worse, and it’s consistently overestimat-
ing; in 2005 the estimate was only off by half a billion, but by 2015 the error had more than
doubled. What’s happening?

It turns out that the population growth rate is not constant, as the exponential model
assumed. Instead, the growth rate is slowing. The world population grew from 1.60 billion in
1900 to 6.13 billion in 2000, so even if it grew by the same amount (not even the same rate,
which would lead to even bigger numbers) we might naively assume that by 2100 the world
population would top 11 billion. However, the United Nations estimates that the population
will top 8 billion around 2050, and then fall back to around present-day levels by 2100.

What’s going on here? There are many factors, but one of the most fundamental is that
the earth has limited resources. Clearly, the population can’t keep growing forever with-
out bound; the earth cannot sustain a trillion people, for instance, given current technology,
infrastructure, and access to food and water. This leads to our conclusion:

Exponential models are not good enough in the long term
because they don’t account for limited resources.
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Logistic Models
In the short term, exponential models can give decent estimates, but in the long run, they’ll
eventually give unsustainable results. To account for this, we turn to logistic models, which
do account for limited resources.

Carrying Capacity

The carrying capacity, or maximum sustainable population, is the largest pop-
ulation that an environment can support.

Logistic Growth

If a population is growing in a constrained environment with carrying capacity M and
growth rate r, then the population can be described by the logistic growth model: The e in this formula is called

the natural base (see the
section on continuously
compounded interest in the
Financial Math chapter for
more information). The value
of this number is
approximately 2.7183. To
evaluate formulas with this
value, look for a button on
your calculator labeled ex

Pt = M

1 +
(
M

P0
− 1
)
e−rt

This model of population growth is sometimes called the Verhulst model, after Pierre-
François Verhulst, a Belgian mathematician who published the model in 18381 and used it
in 1840 to predict the population of the U.S. up to 1940. His estimate of the 1940 population
of the U.S. was off by less than 1%, a remarkable achievement.

He worked with the following data from 1790 to 1840:

Date Population
(Years AD) (millions)

1790 3.929
1800 5.308
1810 7.240
1820 9.638
1830 12.866
1840 17.069

The graph below shows these data points, as well as the curve generated by a logistic model.
Note the trademark S-shape of the curve; this is typical for logistic curves—they initially look
like exponential curves, but then level off as the population approaches the carrying capacity.
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The next graph shows the same model, but this time with data from the U.S. census filled
in for the remaining years.

1It was rediscovered and re-derived several times over the following centuries by other mathematicians
studying population growth.
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Notice how closely the actual data tracks with the model’s predictions; this is evidence
of a good model, especially when we consider that the prediction was made ahead of time.
More often than you might expect, would-be experts will reach for data from the past and
magically find a model that fits the data nearly perfectly, but such models tend to fail at
making predictions, and they don’t actually offer any insight. A truly predictive model like
this one with such accurate results is quite rare.

LIZARD POPULATIONEXAMPLE 1

On an island that can support a population of 1000 lizards, there is currently a popu-
lation of 600. These lizards have a lot of offspring and not many natural predators, so
they have a very high growth rate of 150%. Use a logistic model to predict the lizard
population 2 years from now.

Fill in the logistic model with the given information:

M = 1000, P0 = 600, r = 1.5

Pt = M

1 +
(
M

P0
− 1
)
e−rt

Pt = 1000

1 + 2
3e

−1.5t
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Let t = 2 to predict the population in 2 years:

P2 = 1000

1 + 2
3e

−1.5(2)

= 1000
1.0332 ≈ 968 lizards

The model predicts that there will be approximately 968 lizards in 2 years.

TRY IT A field contains 20 mint plants, and the number of plants increases at a rate of 70%,
but the field can only support a maximum population of 300 plants. Use the logistic
model to predict what the population will be in three years.

https://www.youtube.com/watch?v=cd5xQCfLUZM&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=13
https://www.youtube.com/watch?v=cd5xQCfLUZM&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=13
http://hartleymath.com/versatilemath/tryit/#/growth-models--logistic-growth-with-plants
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RABBIT POPULATION EXAMPLE 2

A forest is currently home to a population of 200 rabbits. The forest is estimated to
be able to sustain a population of 2000 rabbits, and the rabbits can grow at a rate of
50% per year.

(a) Find a model to predict the future rabbit population.

(b) Draw a graph of this model.

(c) Using this model, predict the population after 8 years.

(d) When will the population reach 1000 rabbits?

Solution

(a) We’re told that r = 0.5, M = 2000, and P0 = 200. Putting it all into the logistic
model:

Pt = M

1 +
(
M

P0
− 1
)
e−rt

Pt = 2000
1 + 9e−0.5t

(b) Graphing this equation:
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Note that according to the model, the rabbit population will level out near the
carrying capacity in about 12 years.

(c) In 8 years, the population is predicted to be approximately

P8 = 2000
1 + 9e−0.5(8)

= 2000
1 + 9(0.01832)

= 2000
1.1648 = 1717 rabbits

(d) We’ll use the calculator for this: graph the model and the horizontal line at 1000,
and find their intersection:

The intersection is at x = 4.394, so the population is expected to reach 1000
rabbits after about 4.4 years

https://www.youtube.com/watch?v=mmL2H7_ynUA&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=14
https://www.youtube.com/watch?v=mmL2H7_ynUA&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=14
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Logistic Regression
As before, it is unlikely that we will know at the beginning of a study what the growth rate
is; it’s more likely that we’ll have data and need to build a model to fit. We’ll use a graphing
calculator to do this; although Excel can do it, it is not built-in to the menus that we have
used before, and the process is very involved, so we will not include that in this chapter.

LOGISTIC REGRESSIONEXAMPLE 3

Build a logistic population model for New York City using the population data below.

Year Population (millions)

1900 3.44
1910 4.77
1920 5.62
1930 6.93
1940 7.45
1950 7.89
1960 7.78
1970 7.89

Solution First, enter the data (setting 1900 as year 0) and draw a scatterplot to get a visual
sense of it:

To get the regression equation, enter the STAT CALC menu, then select B: Logistic
near the bottom of the list. Once again, since we entered time in the first data column
and population in the second, we can leave the default options unchanged.

The results are shown below; the graph on the right shows how the model tracks the
data.

The model is

Pt = 8.1
1 + 1.39e−0.066t

Notice on the graph above how this model accounts for the leveling off of the population
near the end.

https://www.youtube.com/watch?v=7gXNhLY1Yyc&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=15
https://www.youtube.com/watch?v=7gXNhLY1Yyc&list=PLfmpjsIzhztutjEb8Pg5OBOlI1p80yVoy&index=15
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Exercises 2.4

1. One hundred trout are seeded into a lake. Absent con-
straint, their population will grow by 70% a year. If the lake
can sustain a maximum of 2000 trout, use a logistic growth
model to estimate the number of trout after 2 years.

2. Ten blackberry plants started growing in a yard. Absent
constraint, blackberries will spread by 200% a month. If the
yard can only sustain 50 plants, use a logistic growth model
to estimate the number of plants after 2 months.

3. A certain community consists of 1000 people, and one
individual has a particularly contagious strain of influenza.
Assuming the community has not had vaccination shots and
are all susceptible, the spread of the disease in the community
is modeled by

Pt = 1000
1 + 999e−0.3t

where Pt is the number of people who have contracted the
flu after t days.

(a) How many people have contracted the flu after 10 days?
Round your answer to the nearest whole number.

(b) What is the carrying capacity for this model? Does
this make sense?

(c) How many days will it take for 750 people to contract
the flu? Round your answer to the nearest whole num-
ber.

4. A herd of 20 white-tailed deer is introduced to a coastal
island where there had been no deer before. Their population
is predicted to increase according to

Pt = 100
1 + 4e−0.14t

where Pt is the number of deer expected in the herd after t
years.

(a) How many deer will be present after 2 years? Round
your answer to the nearest whole number.

(b) What is the carrying capacity for this model?

(c) How many years will it take for the herd to grow to 50
deer? Round your answer to the nearest whole number.

5. The table below shows the population of California from
2010 to 2019.

Year Population (millions)

2010 37.3
2011 37.6
2012 38.0
2013 38.3
2014 38.6
2015 38.9
2016 39.2
2017 39.4
2018 39.5
2019 39.5

(a) Use a graphing calculator to build a logistic regression
model, letting t = 0 in 2010.

(b) What does this model predict that the population of
California will be in 2025?

(c) When does this model predict that California’s popu-
lation will reach 40 million?

(d) According to this model, what is the carrying capacity
for California’s population?

6. The table below shows the population of Florida from
2010 to 2019.

Year Population (millions)

2010 18.7
2011 19.1
2012 19.3
2013 19.6
2014 19.9
2015 20.2
2016 20.6
2017 21.0
2018 21.2
2019 21.5

(a) Use a graphing calculator to build a logistic regression
model, letting t = 0 in 2010.

(b) What does this model predict that the population of
Florida will be in 2030?

(c) When does this model predict that Florida’s population
will reach 23 million?

(d) According to this model, what is the carrying capacity
for Florida’s population?

https://www.myopenmath.com/index.php
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