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Chapter

8

Graph Theory

With billions of users, Facebook is probably the most successful social media company ever.
Since their revenue is based on advertising, Facebook is completely focused on user engagement:
attracting and keeping users, and getting users to sign in regularly and browse.

In order to accomplish this, they need to have a way to track relationships. New users are
more likely to sign up if their friends have accounts, and current users are more likely to be
engaged if their News Feed shows relevant content from the people they are closest to.

The way that social media companies track social networks is through the use of graphs,
which resemble webs (it turns out that the Internet, the World Wide Web, is another example
of a graph). By tracking connections between people, these companies can learn a tremendous
amount of information. For instance, Facebook can suggest new friends for you, and they tend
to indeed be people that you know, because Facebook can tell that you share many friends in
common.

In this chapter, we will learn a few basic concepts related to these graphs, and we’ll find
how they can be used in a wide array of applications: any kind of network can be modeled in
the same way as a friend group.

373



374 CHAPTER 8 Graph Theory

SECTION 8.1 Introduction to Graphs

In the early 1700s, the city of Königsberg in Prussia (now Kaliningrad, Russia), which was
split by the Pregel River, had 7 bridges connecting the north and south banks of the city to
two islands in the center of the river, as shown in the drawing above. A popular puzzle of the
day challenged travelers to plan a walk through this part of the city in such a way that they
would cross each bridge exactly once (you may want to pause and see if you can find such a
path).

Leonhard Euler, in 1736, turned his attention to this problem. Although the problem doesn’t
seem to be an important one, what is interesting is how Euler solved it. He noticed that the
path a person travels on a given land mass is irrelevant; all that matters is which bridges they
cross. Thus, he decided to simplify the picture by simply drawing a dot to represent each land
mass, and a line connecting two dots to represent a bridge. Here’s the result:

That’s the first example of a graph; while we use the word graph to mean several different
things, in this chapter, a graph will refer to a diagram like the one above.

Graphs

A graph, in graph theory, consists of nodes (or vertices) and edges; each edge connects
one node to another.

Now, notice that we’ve drawn the nodes in positions that roughly correspond to the orien-
tation of the map; the one on the right represents the eastern island, for instance, while the
two on the top and bottom of the left row represent the northern and southern banks.

However,Location is not important.

Connections are what matters.

this is completely arbitrary; since we simplified the picture to land masses and
connections, it turns out that the nodes can be rearranged at will, as long as the final result
has the same pattern of connections, meaning that the same nodes are connected by edges.
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Before we illustrate this, let’s label each node so that we can see them move:

1

2

4

3

Each of these graphs is equivalent, according to Euler’s new theory, to the original one:

1

2

4

3 1 2

4

3
1

2

4

3

In fact, we could describe it in words, Of course, it’s much more fun
to draw pictures than to write
something like this.

by saying something like

There are 4 nodes.
Node 1 is connected to nodes 2, 3, and 4.

Node 2 is connected to node 3 by two edges.
Node 3 is connected to node 4 by two edges.

Any picture you could draw that fits this description would be equivalent to the first graph
that we drew.

Examples and Definitions
Let’s take a look at a few examples of graphs, and along the way, we’ll encounter a few new
terms that we can use to categorize and describe them.

Application 1Transportation Network The graph below shows a simple train system; each edge indicates
a line that runs between two cities.

DC

Pittsburgh
New York

Boston

Notice the loop at New York; this implies that there is a train line that returns to the same
station from which it leaves. There could be, for instance, a sightseeing train that simply takes
passengers on a short loop. We simply include it here to show the possibility of a loop, which
is an edge that connects a node to itself.
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Application 2 Communication Network This second example shows a fictional network, which could
consist of connections between data centers.

San Francisco

Los Angeles

Denver

Chicago

Detroit

DC

New York

Notice that the edges on this graph have arrows that indicate which direction the data can
travel; for instance, data can flow from Detroit to New York, but to send data in the opposite
direction, it would have to go from New York to Chicago, and then on to Detroit.

Also, this graph, unlike the one before it, has multiple edges between some pairs of nodes
(we’ve seen this before, on the graph of Königsberg).

These two distinctions lead to our first set of definitions; the following terms can help to
categorize graphs, and it is useful to think about new applications in terms of what category
they fit into.

Graph Classifications

Simple Graphs and Multigraphs: a simple graph is one that has at most one
edge between two nodes, and contains no loops; a multigraph can have multiple edges
connecting the same pair of nodes, and may contain loops.

Undirected and Directed Graphs: an undirected graph has no notion of direction
to the edges; in a directed graph (also called a digraph), each edge has an associated
direction.

CLASSIFYING GRAPHSEXAMPLE 1

For each of the following graphs, determine whether it is a simple graph or multigraph,
and whether it is directed or undirected.

(a) (b) (c) (d)

Solution

(a) Since the edges have directions associated with them, and there is one pair of
nodes that have multiple edges between them, this is a directed multigraph

(b) There are no multiple edges or loops, and no directions, so this is an
undirected simple graph

(c) There are no arrows, but because of the multiple edges and the loop, this is an
undirected multigraph

(d) There are no multiple edges or loops, so this one is simple, but because of the
arrows, it is a directed simple graph

https://www.youtube.com/watch?v=4Q8wrqaKKDE&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=1
https://www.youtube.com/watch?v=4Q8wrqaKKDE&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=1
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Let’s go back to examples of graph theory applications.

Application 3Social Network Suppose, for instance, that we selected a small group of people and checked
whether they are connected on Facebook; if two people are friends, we draw an edge between
them.

Agnes

Ellis

Marie

Ivan

TamaraJoel

Musa

Kira

This is a simple graph, since it doesn’t make sense to have more than one connection between
two people; they are either friends or are not. Also, since Facebook friendship is a two-way
relationship, this is an undirected graph.

If we wanted to make a directed multigraph for a social network, we could use Instagram,
for instance, since one person can follow another without being followed back. The result might
look like this: Notice how complicated this is

already, with only 8 people.
Real social networks have
incredibly complicated graphs;
although we may not be able to
draw them, computers can still
analyze them to glean all sorts
of information, like which
users are the most influential.

Agnes

Ellis

Marie

Ivan

TamaraJoel

Musa

Kira

Here, an edge indicates whether one person follows another, and the direction of the arrow
goes from the follower to the one they follow.

Notice that one of the things we can glean from a graph like these is who in this social
group is the most well-connected. The easiest way to do this is simply to count the number
of connections that each person has to others, which corresponds to the number of edges that
connect to that node. We have a special name for this count: we call it the degree of a node.

Degree

The degree of a node in an undirected graph is the number of edges that connect to it.

Note: a loop counts twice, since the loop connects to the node at both of its ends.
This is mostly by convention, but it is important so that some concepts are consistent
whether loops are included or not.

In a directed graph, each node has two degrees: the in-degree and out-degree. The
in-degree counts how many edges come into that node; the out-degree counts how many
edges leave from that node.
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DEGREES OF NODESEXAMPLE 2

Find the degree of each node in the social network graphs shown here.

(a) (b)

Solution We simply need to count the number of edges that connect at each node. The only
complication in part (a) is the loop on the lower-right node; remember that the loop
adds a total of 2 the degree of that node. For part (b), pay attention to the direction
of each edge; an edge adds one to the out-degree of its starting node and one to
the in-degree of its ending node (note that a loop here contributes one each to the
in-degree and out-degree of its node).

Here’s the final result; each node is labeled with its degree(s):

2

2

2

4

43

5

2

In: 2
Out: 1

In: 3
Out: 2

In: 1
Out: 1

In: 1
Out: 2

In: 2
Out: 2

In: 0
Out: 1

In: 1
Out: 2

In: 2
Out: 1

(a) (b)

There are a couple of interesting observations we can make about node degrees.

Degrees: Observation 1

The sum of the degrees of all the nodes in an undirected graph is always even.

Similarly, the sum of all in-degrees and out-degrees of all the nodes in a directed graph
is always even.

The reason for this is very simple: each edge contributes two degrees to the total for the
graph, one degree at each end, so no matter how many edges there are, there will be twice
as many degrees, and two times anything is always even. In a directed graph, each edge
contributes one out-degree and one in-degree; thus, the total in-degrees and out-degrees will
be equal, and when these are added, the result will also be even.

Degrees: Observation 2

An undirected graph has an even number of nodes with odd degree.

https://www.youtube.com/watch?v=ppDOCfP0lYs&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=2
https://www.youtube.com/watch?v=ppDOCfP0lYs&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=2
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To verify this, we need to remember that the total number of degrees is even, and we need
to know a principle of even numbers: if you start with an even number, add something
to it, and end up with an even number, the number you added must have been
even. In other words, if you add an even number and an odd number, the result will be odd.

Therefore, if we split the graph into even nodes and odd nodes, we can split up the total of
all degrees (which we know is even) like this:

degrees of even nodes + degrees of odd nodes = even

Since the first part is even (if you add up a bunch of even degrees, the result is even), and the
result is even, we know that the total number of degrees for all the odd nodes must be even
also (that’s the bolded principle in the last paragraph).

Think about adding together a bunch of odd numbers: when we add two of them, we get
an even result, but adding a third makes the result odd. Adding a fourth makes it even again,
and so on, so clearly there must be an even number of these nodes to make the result even.

If that explanation wasn’t clear to you, don’t worry too much; this is simply an interesting
principle that we can observe about graphs.

Back to examples!

Application 4Street Map The graph below could represent a small segment of a street map, where each
edge corresponds to a street, and each node corresponds to an intersection.

This is the way that Google Maps, for instance, stores mapping information. Notice the
number written along each edge; these are called edge weights. These could represent the
distance between each pair of nodes, or perhaps the time that it will take to cover that distance.
Again, for services like Google Maps that track traffic information, these weights would be
constantly updated to reflect current traffic data.

1

2

3

4

5

6

7

8

0.14

0.63

0.54

0.31

0.35

0.30

0.31

0.47

0.54

0.54

0.43

0.54

0.62

0.37

Weighted Graphs

A weighted graph has a weight associated with each edge; these weights can represent
things like distance or cost.

Since the location of the nodes in a graph is not significant, weights can be used to encode
distance information without having to worry about drawing a graph in such a way that it
shows the distances between nodes.
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Application 5 Round-Robin Tournament A tournament in which each team competes against every
other team is called a round-robin tournament. If we draw a graph in which each node corre-
sponds to a team and each edge represents a game played between two teams, it could look
like the following.

Team 1

Team 2Team 3

Team 4

Team 5 Team 6

This graph is interesting because every node is connected to every other node; we have a
special name for graphs like this: we call them complete graphs.

Complete Graphs

A complete graph is an undirected graph with an edge between every pair of nodes.

A complete graph with n nodes is often labeled Kn.

Kn has n(n− 1)
2 edges.

Sidenote: there is an interesting probability question called the Birthday Problem, which
deals with the probability that in a group of n people, at least two people will share the same
birthday. It turns out that in a group of only 23 people, the probability is over 50%. This
sounds surprising, because that seems like a very small group, but since the significant part is
the pairing of people, we can think of this group as a complete graph with 23 nodes. By looking
at the one above, you can imagine that K23 is much more complicated (with 253 edges). Now,
recognizing that there are 253 pairings, the likelihood that one of these pairings will match
birthdays is less surprising (there’s more to the problem than this, but that’s the core concept).

The first four complete graphs (K2 through K5) are shown below. For obvious reasons, K1
is not interesting enough to show.

K2 K3 K4 K5
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Application 6Single-Elimination Tournament Another type of tournament, like most playoffs, is an
elimination tournament, in which each team is paired up with another; the loser is knocked
out, and the winner moves on to the next round to compete against the winner of another
pairing. For simplicity, we can focus on single-elimination tournaments, where each competition
consists of a single game (unlike the NBA playoffs, for instance, in which teams play a best-of-
7-game series in each round).

The graph below shows a portion of the 2019 NCAA men’s basketball tournament, from
the Sweet Sixteen round onward in the West and East regions:

Michigan

Texas Tech

Florida State

Gonzaga

Michigan State

LSU

Virginia Tech

Duke Duke

Mich. St.

Gonzaga

Texas Tech

Texas Tech

Mich. St.

Texas Tech

Notice that we could have drawn the full graph for the full bracket; instead, we drew only
a portion of it. The graph above is a subgraph of the full tournament graph. This graph also happens to be

a tree, which we’ll discuss more
in the last section of this
chapter.Subgraphs

If you start with a graph, and remove some nodes and/or edges, the result is a subgraph
of the original one (the original one is called a supergraph of the smaller one).

Application 7Utility Connections Suppose we need to connect three houses to three utilities; the graph
could look like the following.

House1 House2 House3

Gas Water Electricity

It turns out that this is an example of a bipartite graph, which is one that can be split into
two sets of nodes, where there are only connections between the two sets (none within each
set). That’s not what we’ll focus on here, though.

The question we’ll think about is this one: is it possible to draw this graph in such a way
that none of the edges cross? In practical terms, this would mean arranging the houses and
utilities in such a way that burying the utility line would be simplified by not having to worry
about the others while digging.

Planar Graphs

A planar graph is one that can be drawn without any edges crossing.
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There are many applications of planar graphs; for instance, when designing a circuit board,
engineers must lay out the connections in such a way that none of them cross, and highway
engineers encounter a similar problem.

Let’s take a look at a simpler example: we can show that K4 is a planar graph by moving
one of the edges to the outside. On the left below, we have the familiar representation of K4,
and on the right side, we have a planar representation for it:

Back to the example with the houses and utilities: it turns out that this example is non-
planar. You can convince yourself of this by trying to draw its planar representation, but
we won’t show the full proof here for the sake of simplicity. In short, though, if you start
with two houses and two utilities, that graph is planar, and you can add a third house with-
out crossing any edges. Once you do, however, there’s no region in which you can place the
final utility in such a way that it can connect to all three houses without two edges intersecting.

We haven’t exhausted the possibilities for applications, but hopefully the pattern is clear:
whenever an application involves some sort of connection that can occur between two items,
a graph can be used to model this situation. Once you start thinking about the world in this
way, it becomes clear that the applications of graph theory are nearly unlimited.

The terms and definitions in this section are ones that you should be familiar with, since
we’ll use them throughout the rest of the chapter. As long as you can connect each concept
with the relevant examples, you’ll be well prepared for the rest of our study of graph theory.
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Exercises 8.1

1. There is a group of six people: Ana, Josh, Hope, Pa-
tricia, Jeff, and Carlos. Josh is friends with Patricia, Hope,
and Ana; Jeff is friends with Patricia and Carlos; Patricia
and Hope are friends. None of the other pairs of people are
friends. Draw a graph to represent this group.

2. On campus, you travel between five buildings: Braddock
Hall, Catoctin Hall, the library, the student center, and the
arts building. There are walkways connecting Braddock Hall
to Catoctin Hall and the library; the library is also connected
to the arts building and the student center; there are also
walkways connecting the student center to Catoctin Hall and
the arts building. Draw a graph to represent this group of
buildings.

3. The map below shows eight states and the District of
Columbia highlighted in blue. Draw a graph to represent
this map, where each node represents a state or district, and
an edge represents a shared border between two regions.

4. The map below shows eight countries in Asia highlighted
in blue. Draw a graph to represent this map, where each
node represents a country, and an edge represents a shared
border between two countries.

5. The graph below represents a tournament; each edge
marks a game between two teams.

Warriors

Hawks

Hornets

Lions Bears

(a) Did the Hornets and the Hawks play each other?

(b) How many games do the Warriors play?

(c) Which teams do the Bears play?

(d) Which team(s) played the most games?

(e) Which team(s) played the fewest games?

6. The graph below is an influence graph, where each edge
represents the influence that one person has on another; the
arrow goes from the influencer to the one they influence.

Joelle Jonathan

Anastasia Laila
Zachary

(a) Who does Laila influence?

(b) Does Jonathan influence Anastasia?

(c) How many people does Joelle influence?

(d) Who is the most influential (influences the most peo-
ple)?

(e) Who is the most influenced (influenced by the most
people)?

https://www.myopenmath.com/index.php
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For problems 7–10, describe a graph that could be used to model the given application. Specifically, answer the following
questions:

(a) Are loops allowed in this graph?

(b) Are multiple edges allowed between the same pair of nodes?

(c) Is this a simple graph or multigraph?

(d) Is this graph directed or undirected?

(e) Is this a complete graph (generally)?

7. Flights between major cities, if each node represents a
city and each edge describes a flight from one city to another
(or from a city to itself, if there is a sightseeing or training
flight).

8. A party, where each node represents a person, and each
edge represents whether one person knows the name of an-
other.

9. The floorplan of a house, where each node represents a
room or space (like a hallway), and each edge represents a
doorway.

10. Courses offered at a college, where each node represents
a course, and each edge represents a prerequisite require-
ment.

For problems 11–14, answer the following questions for the given graph:

(a) Is it a simple graph or multigraph?

(b) Is it directed or undirected?

11.
a b

c d

12.
a b

c d

13.

a

b

c

de

f

14.

a b

c d

e

For problems 15–17, determine the degree of each node. For the directed graphs, determine both the in-degree and the
out-degree of each node.

15.

a b

c d

e

16.

a

bc

d

e f

17.

a

b
c

d

e

f

g
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SECTION 8.2 Euler and Hamilton Paths

CC BY-SA 2.0, Gage Skidmore

During a magazine interview in 1994, the actor Kevin Bacon made an offhand comment that
he had “worked with everybody in Hollywood or someone who’s worked with them.” From this
sprang the idea of the Six Degrees of Kevin Bacon, which sometimes appears as a game in
which players must find a set of links between any given actor and Bacon. For instance, Emma
Watson has a Bacon number of 2, meaning that it takes two steps to get from her to Bacon
(Watson was in The Circle with Bill Paxton, who was in Apollo 13 with Kevin Bacon).

It turns out that, as the name suggests, a surprising number and range of actors can be
connected to Kevin Bacon (or really any prolific actor) with six steps or fewer. In fact, according
to the website oracleofbacon.org, there are over 1.2 million actors with a Bacon number of 4 or
less, and the average Bacon number is just over 3.

Paths and Circuits

What we’ve described above is the process of finding the shortest path between two nodes
on a graph (a graph where the nodes represent actors, and two nodes are connected by an edge
if those two actors have appeared together). We’ll talk more about finding shortest paths in
the next section, but for now, we can simply start with the definition of a path.

The definition of a path is quite intuitive: start at one node, then move along edges to
another node, and you’ve taken a path. We use the term circuit to describe a path that ends
at the same node where it started (so a circuit is a specific type of path; the term path is a
general one that includes circuits).

a b c

d e f

1

2

34

a b c

d e f

1

2

3,45

Path: a→ d→ e→ b→ d Circuit: b→ d→ e→ c→ e→ b

Note that in an undirected graph (like the two examples above), a path can travel in either
direction along an edge, but in a directed graph, a path is only allowed to take an edge in its
specified direction.

Paths and Circuits

A path in a graph is a sequence of edges; if the graph is simple (no multiple edges be-
tween nodes), the path can be described using the nodes that it passes through in order.

A circuit is a path that starts and ends at the same node.

Notice another distinction between the two graphs above: on the left, the path used four
distinct edges to travel from a to d (although the path passed through d once before ending
there), while the circuit on the right used the same edge (between c and e) twice. This brings
us to another definition.

Simple Paths and Circuits

A simple path or circuit is one that does not contain any edge more than once.

In a moment, we’ll return to the problem at the beginning of the last section: the Königsberg
Bridge Problem. Remember that in that problem, we were hunting for a journey through the
city that did not reuse any bridges; it turns out that we were actually looking for a simple path.
Before we go back to that problem, though, we need to discuss one more concept: connectivity.
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Connected Graphs
A connected graph is exactly what you would expect:

a b c d

e f g h

a b c d

e f g h

Connected Disconnected
(with two connected components)

TheNote: it’s a bit more
complicated for a directed

graph; in that case, a graph is
strongly connected if there is an
allowable path between every

pair of vertices, and weakly
connected if we could find a
path by ignoring directions.

definition is a simple one, and uses the idea of a path; a graph is connected if you can
travel wherever you want from any starting place.

Connectivity

An undirected graph is connected if there is a path between every pair of nodes in the
graph.

It turns out that we can even describe how connected a graph is, by seeing how hard it is
to make it disconnected (in the example above, it was pretty easy to do, by simply removing
one edge). But this simple description of connectivity is enough for us, because now we want
to turn our attention back to the original problem: the bridges.

Euler Paths
Remember the setup: we want to find a way to travel through the city of Königsberg in such a
way that we cross all of the seven bridges, but don’t cross any more than once. In other words,
we want to find a simple path through the following graph that uses every edge:

Just to clarify: a simple path means that we don’t reuse edges, but we could leave some
edges out. The additional requirement that we use every edge is what elevates this from a
simple path to an Euler path.

Euler Paths

An Euler pathNaturally, an Euler path is
only possible in a connected

graph.

in a graph is a path that goes through every edge of the graph exactly
once.

Alternately, an Euler path is a simple path that contains every edge of the graph.

An Euler circuit is defined similarly: it is an Euler path that begins and ends at the
same node.

Now, the important question is, how can we tell if an Euler path or circuit is possible? If
we know it’s possible, of course, we’ll also want to be able to find it.

It turns out that the answer to this question is surprisingly simple; there’s something de-
lightful about elegant answers like this one. Let’s see what Euler discovered; we’ll take a look
at a few examples to see what we can learn.
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Let’s start with a simple one:

The goal is to trace over this graph, drawing every edge without lifting our virtual pen or
retracing any lines. With a little trial and error, we can find an Euler circuit; for instance, if
we start at the top node, we can trace every edge and end up back at the same place:

16

5

24

3

Notice Observation 1:
to draw an Euler circuit, every
time we arrive at a node, there
must be an unused edge we
can use to leave.

that we can already draw one conclusion, in order to draw an Euler circuit, we can’t
get stranded anywhere. Now, what would it mean for us to get stranded? If we can find an
edge leading to a node, but there aren’t any unused edges that we can use to leave, we’ll be
stuck.

While you mull on that, here’s another example:

a b

c d

e f

If we start at a, for instance, we’d have to also end there, because otherwise we’d have used
up both edges that connect to it (one while leaving, and one while arriving) and have nowhere
to go. In fact, Observation 2:

if we start at an even node, we
must end at the same node.

this is true whenever a node has an even degree; leaving and returning uses up
a pair of edges, so if you start at an even node, you have to end at the same node.

Now, notice that a, c, d, and f are all even nodes (only b and e are odd). If we started at
any of these even nodes, we’d run into a problem, because we’d have to draw a circuit (see
Observation 2). Look back at Observation 1: if we’re drawing a circuit, we can’t get stranded
anywhere, which means we must be able to find an unused edge every time we arrive at a node.
The first time we arrive at b, for instance, we’ll have two unused edges to choose from, but
when we return by the other one, we’d be stranded at b.

Okay, Observation 3:
if we start at an odd node, we
must end at another odd node.

since we can’t start at any of the even nodes, let’s start at one of the odd ones (we’ll
pick b, but we could also use e). There are many options, but here’s one possible route:

a b

c d

e f

1

2 3 4

5

6 7 8

9
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One final example (which happens to be K4):

a

b c

d

Since this one is symmetric, we can start at any node; there will be no difference if we pick
another to start. Let’s say we start at a:

a

b c

d

1

2

3

4

AfterObservation 4:
if there are too many odd

nodes, an Euler path is
impossible.

these first four edges, we arrive at d, and we’re stuck; either way we go from here,
we’ll get stranded at either b or c. The problem is that there are too many odd nodes, so we
end up running into one without anywhere to go.

Let’s put together what we’ve observed from these three examples:
• The question hinges on whether nodes have even or odd degree.
• In the first example, all the nodes were even, and we could find an Euler circuit.
• In the second example, there were two odd nodes, and we could find an Euler path, but

it had to start at one odd node and end at the other.
• In the third example, there were four odd nodes, and we couldn’t find either an Euler

path or an Euler circuit.
We can boil it down like this: for an Euler path/circuit, every time you arrive at a node,

you need to be able to leave. The possible exceptions are the beginning and end, if you’re only
drawing a path, not a circuit. Arriving and leaving uses up two edges, so the nodes need to all
be even for a circuit. For a path, there can be two odd nodes; one will be the starting point,
and the other will be the ending point.

This sounds more complicated than it really is; we can write a simple rule to summarize
everything we’ve observed.

Existence of Euler Paths and Circuits

If all the nodes of an undirected graph are even, the graph has an Euler circuit (it can
start and end at any node).

If there are two odd nodes, there is no Euler circuit, but there is an Euler path (starting
at one odd node and ending at the other).

IfNote: if there is no Euler path,
we could still try the Chinese
Postman Problem (named in

honor of the Chinese
mathematician Kwan Mei-Ko,
who first studied it). The goal
of this problem is to find the

shortest circuit that visits
every edge; in other words, the
circuit that reuses as few edges

as possible.

there are any other number of odd nodes (other than zero or two), there is no Euler
path or circuit.

With that, let’s go back to the bridges of Königsberg and see if there is an Euler path; let’s
label each node with its degree:

3

3

5

3

Since there are four odd nodes, there is no Euler path, so there’s no way to travel through
the city by crossing every bridge exactly once.
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MODERN KÖNIGSBERG EXAMPLE 1

A modern image of part of Kaliningrad (which was once Königsberg) is shown below,
with bridges highlighted.

Is there an Euler path and/or circuit through this part of the city? If so, find one.

SolutionFirst, we need to abstract this map with a graph, keeping the nodes in the same
positions as before, but redrawing the edges to match the current bridges:

a

b

c

d

Next, we can find the degree of each node:

a

b

c

d

3

2

3

2

Since there are exactly two odd nodes, it is possible to find an Euler path through this
graph, but not an Euler circuit. One Euler path is shown below:

a

b

c

d

1
3
4

2

5

This path can be written a→ b→ c→ a→ d→ c . Notice that it starts at one of the
odd nodes and ends at the other.

https://www.youtube.com/watch?v=b7GYc7zb5ec&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=3
https://www.youtube.com/watch?v=b7GYc7zb5ec&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=3
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EXISTENCE OF EULER PATHSEXAMPLE 2

For each of the following graphs, determine if an Euler circuit exists. If not, determine
whether there is an Euler path.

a b

c
d

e

f g

a b

c d

a

b
c

d

e

f
g

h
i j

(a) (b) (c)

Solution

(a) Since all the nodes except d are odd, each with a degree of 3,
there is no Euler path or circuit in this graph.

(b) All the nodes in this graph are even (a has degree 2, the rest have degree 4),
there is an Euler circuit for this graph.

(c) Counting the degrees of each node for this graph is a bit more tedious, but the
principle is the same. The results are below (remember that a loop contributes 2
to the degree of its node):

Node Degree

a 4
b 6
c 6
d 6
e 6
f 4
g 3
h 4
i 6
j 5

Since there are exactly two nodes (g and j) with odd degree,
there is an Euler path (but not an Euler circuit) for this graph.

TRY IT For each of the following graphs, determine if an Euler circuit exists. If not, determine
whether there is an Euler path.

(a) (b)

https://www.youtube.com/watch?v=Lr596-_L0M0&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=4
https://www.youtube.com/watch?v=Lr596-_L0M0&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=4
http://hartleymath.com/versatilemath/tryit/#/graph-theory--euler-paths
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EULER PATH THROUGH HOUSE EXAMPLE 3

The floor plan below shows the first floor of a single-family home. Is there an Euler
circuit/path through the interior of this level, using the highlighted doors (in other
words, ignoring external doors and stairs)?

SolutionFirst, let’s draw a graph to represent this home, with each node representing a room
and each edge representing a door. Since the entrance is the most central location (in
terms of connections to the rest of the home, we’ll place that in the center, with edges
out to the other rooms:

Entrance Family Room

Living/DiningKitchenPantry

Laundry

Bathroom

Now, we can count the degree of each node:

Room Degree

Entrance 6
Family Room 2
Living/Dining Room 2
Kitchen 2
Pantry 1
Laundry 1
Bathroom 2

Since there are two rooms with an odd number of doors,
there is an Euler path, but not an Euler circuit through this level. Any Euler
path must start in either the pantry or laundry room and end in the other.

https://www.youtube.com/watch?v=tBkGIznLGZo&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=5
https://www.youtube.com/watch?v=tBkGIznLGZo&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=5
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Finding an Euler Circuit
It’s fairly simple to determine whether or not an Euler circuit exists, by simply identifying the
degree of each node. Once we know that there is such a circuit, it is often simple enough to
find what it is just by looking at the graph and tracing through it, as long as the graph is
relatively small.

However, here we’ll illustrate a more systematic process for finding an Euler circuit, in case
it is useful. We’ll use the graph below as an example.

a

b

c

d

e

f

g

h

i

j

k

Notice that all the nodes are even, so it is possible to find an Euler circuit (or many, indeed).
We can start at any point, and eventually come back and end at the same node.

To begin, pick a starting point, and construct any circuit through the graph. Let’s say we
start with a; we could do something as simple as a → b → e → a, but the longer our initial
circuit is, the faster this process will go, so let’s start with a→ b→ c→ d→ b→ e→ a:

a

b

c

d

e

f

g

h

i

j

k

1

2

6

3

5

4

Now, delete those edges from the graph, and remove any points that are left isolated (so
for instance, a will be deleted, but e will not, because there will be some remaining edges
connected to e).

d

e

f

g

h

i

j

k

Then pick another point (we’ll use e) and repeat this process. Say, for instance, we pick the
next circuit to be e→ i→ f → d→ g → f → e:

d

e

f

g

h

i

j

k

4

1

6
3

2
5
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After removing those edges and isolated points, we can find one final circuit through the
remaining points: i→ j → h→ k → g → h→ i:

g

h

i

j

k

5

6
1

2

3
4

Having used all the edges now, we have three partial circuits:

a→ b→ c→ d→ b→ e→ a
e→ i→ f → d→ g → f → e
i→ j → h→ k → g → h→ i

To construct the final Euler circuit through the full graph, we simply stitch these three
circuits together. Start from the end: notice that the last one begins and ends with i. Then,
go to the one just before that: when that second circuit passes through i, we can pause and
run through the third circuit before resuming. In practice, just replace i with the third circuit;
instead of

e→ i→ f → d→ g → f → e

we will now have

e→ i→ j → h→ k → g → h→ i → f → d→ g → f → e

Finally, notice that this long string begins and ends at e, so we can substitute the whole
thing in the place of e in the first circuit, and we’ll have our full Euler circuit:

a→ b→ c→ d→ b→ e→ i→ j → h→ k → g → h→ i → f → d→ g → f → e → a

Again, in many cases there’s no need to resort to a systematic process like this, but if you
have trouble spotting an Euler circuit immediately, you can try it.

Euler Paths in Directed Graphs
The rule we described earlier (all nodes even → Euler circuit; two odd nodes → Euler path)
applies to undirected graphs, but what about directed graphs? Now we don’t have a single
degree for each node; they each have an in-degree and an out-degree. Can we develop a similar
rule, though?

With a bit of thought, we can adapt the earlier rule for directed graphs. Specifically, think
about the condition for an Euler circuit, that all nodes be even. What does this actually mean?
The reason for this is that we need to be able to leave every node that we arrive at, so really
what the rule implies is that there are as many ways out as ways in. Thinking about it that
way makes it clear that for a directed graph, we will look to see whether the in-degree and
out-degree are equal.

Similarly, the condition for an Euler path is really about verifying that only the starting
and ending node have one more exit and entrance, respectively, than the others, which all have
equal entrances and exits. So for a directed graph, we can adapt this condition to say that all
the nodes should have equal in-degree and out-degree, except for two: one of which has one
more inlet than outlet, and the other has one more outlet than inlet.
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Euler Paths in Directed Graphs

If each node of a directed graph has equal in-degree and out-degree, the graph has an
Euler circuit.

If one node has an in-degree that is larger than its out-degree by 1, and another node
has an out-degree that is larger than its in-degree by 1, there is no Euler circuit, but
there is an Euler path (starting at the node with larger out-degree and ending at the
node with larger in-degree).

EULER PATHS IN DIRECTED GRAPHSEXAMPLE 4

For each of the following graphs, determine if an Euler circuit exists. If not, determine
whether there is an Euler path.

a b

c d

a b

c d

e

(a) (b)

Solution

(a) Count the in-degree and out-degree of each node:

Node In-Degree Out-Degree

a 1 2
b 2 2
c 2 2
d 3 2

Notice that only two nodes do not have equal in- and out-degrees; one of them
has exactly one more outlet than inlet, and the other has the reverse. Thus,
while there is no Euler circuit, there is an Euler path for this graph, starting at

a and ending at d.

(b) Again, count the degrees:

Node In-Degree Out-Degree

a 1 1
b 3 3
c 2 2
d 2 2
e 1 1

This time, all the nodes have equal in-degree and out-degree, so
there is an Euler circuit for this graph (we could start at any node).

https://www.youtube.com/watch?v=2N7o_CWptpM&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=6
https://www.youtube.com/watch?v=2N7o_CWptpM&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=6


SECTION 8.2. Euler and Hamilton Paths 395

Hamilton Paths
Take a look at the map below; what do you see?

By now, you can probably see a graph; if we designate each intersection as a node, the edges
would be one-block segments of streets.

Now, suppose you work for the city’s public works department, and your job is to schedule
workers throughout the city as efficiently as possible.

After a snowstorm, your job is plan routes for the snowplows to get the streets cleared with
a minimal amount of wasted driving. This is, in fact, an Euler path problem (or more likely a
Chinese Postman problem, if an Euler path doesn’t exist). Having read this chapter, you draw
up a hyper-efficient plan and save the city thousands in fuel.

A Although William Rowan
Hamilton was not the first one
to study these paths, they are
named for him because he
invented a puzzle called the
Icosian game, which starts
with a 12-sided dodecahedron:

The goal is to find a Hamilton
circuit, traveling along the
edges and touching each corner
exactly once. Hamilton sold
this puzzle to a game dealer,
and it was marketed
throughout Europe. In the
most popular form, the
dodecahedron was modeled as
a planar graph, like this one:

It was sold as a wooden board
with pegs at the nodes of the
graph, and players would wind
a string along a path to solve it
(one solution is shown in red).

few months later, the city decides to switch out all the traffic lights for a new, more
efficient, more reliable model. Since you did such a great job with the snowplow scheduling,
the department tasks you with planning the routes of the work crews through the city for this
new contract. What’s different about this problem?

In the snowplow problem, the goal was to travel along every edge exactly once. Now, with
the traffic light problem, the edges are not the important part: there’s no need to drive along
every road, but simply to reach every intersection so that the crew can do their work there.
Thus, the goal of the traffic light problem is to travel to every node exactly once. This is an
entirely new kind of problem, and what we’re looking for now is called a Hamilton path.

Hamilton Paths

A Hamilton path (or Hamiltonian path) in a graph is a path that passes through
every node of the graph exactly once (and a Hamilton circuit is a Hamilton path that
happens to be a circuit).

Now, having seen how easy it is to determine whether a graph has an Euler path or circuit,
you may be expecting a similar rule for Hamilton paths. However, it turns out that there is
no known rule that can tell us for certain whether or not any graph has a Hamilton path or
circuit.

There are a few observations that we can make:

1. Every complete graph has a Hamilton path, and as long as there are at least 3 nodes,
there is a Hamilton circuit. Since there are edges between every pair of nodes, we can
visit all the nodes in any order we choose.

2. If a graph has a node with degree 1, it cannot have a Hamilton circuit, because there’s
no way to both arrive at and leave that node. It could, of course, have a Hamilton path.

3. When drawing a Hamilton path/circuit, once you have marked a node, you can eliminate
all the other edges that connect to that node, which can simplify the picture.

There are other, more complicated theorems that give conditions under which Hamilton
circuits exist (for instance, Dirac’s Theorem says that a simple graph with n nodes, where
n ≥ 3, has a Hamilton circuit if the degree of every node is at least half of n), but for our
purposes, we will simply check whether a graph has a Hamilton path or circuit by inspecting it
and seeing if we can find one. Since we’ll only deal with small graphs, this is good enough for
us. For larger graphs, we could use a brute force approach, which means trying all the possible
paths to see if any is Hamiltonian (as you can imagine, this is quite tedious).
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HAMILTON PATHSEXAMPLE 5

For each of the following graphs, determine whether a Hamilton circuit exists; if so,
describe the circuit. If there is no Hamilton circuit, see if there is a Hamilton path.

a b

c d

a

b

c

d

e

f

e f

cba

d

g

(a) (b) (c)

Solution

(a) Since this is a complete graph, K4, we know that a Hamilton circuit exists . We
could trace, for instance, the path a→ d→ c→ b .

(b) There is no Hamilton circuit, because c and f form bottlenecks; once you pass
through one of them to go to the other side of the graph, there’s no way to return.
However, we can find a Hamilton path; a→ b→ c→ d→ e→ f , for instance .

(c) We know that there is no Hamilton circuit, because we have nodes with de-
gree 1. Let’s look for a Hamilton path; say we start at a. As soon as we
travel to e, we’re trapped, because no matter where we go, we’ll cut off several
points without any way to get to them without going back through e. Therefore,
there is no Hamilton circuit or path for this graph.

TRY IT For each of the following graphs, determine whether a Hamilton circuit exists; if so,
describe the circuit. If there is no Hamilton circuit, see if there is a Hamilton path.

a

b

c

d
e

a b c

de

(a) (b)

https://www.youtube.com/watch?v=fMz9k_Z2Trg&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=7
https://www.youtube.com/watch?v=fMz9k_Z2Trg&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=7
http://hartleymath.com/versatilemath/tryit/#/graph-theory--hamilton-paths
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Exercises 8.2

In problems 1–3, determine whether the given graph is connected or disconnected.

1. 2. 3.

In problems 4–16, determine whether the given graph has an Euler circuit (and draw one if it exists). If not, determine
whether it has an Euler path (and draw one if so).

4.
a b

c d

e

5.
a

b

c

d

e

f

6.
a b

c

de

7.

a

b c

d
e

fgh

i

8.
a

b

cde

f

9.

a b c d e

f g h i j

k l m n o

10.

a

b

c

d

e

f
g

h

11.

a b c d

e fghi

12.
a b

c d

13.
a b

c

d e

https://www.myopenmath.com/index.php
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14.
a b

c

d e f

15.
a b c d

e f g h

i j k l

16.
a b

cd

e

In problems 17–19, determine whether the picture shown could be drawn in one continuous motion without lifting the pencil
or retracing part of the drawing.

17. 18. 19.

20. The map below shows ten states highlighted in blue. Is
there a path that a traveler could take through these states
in such a way that they cross each border between two states
exactly once?

21. France is divided into 18 administrative regions, of which
twelve are contiguous. The map below shows seven of these
regions highlighted in blue. Is there a path that a traveler
could take through these regions in such a way that they
cross each border between two regions exactly once?

In problems 22–25, determine whether the given graph has a Hamilton circuit (and draw one if it does). If not, determine
whether it has a Hamilton path (and draw one if so).

22.
a b

c

d e f

23.
a b

c de f

g

24.
a b c

d
e

f

g h i
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SECTION 8.3 Shortest Paths

How does a navigation system find the best route to the destination? This is an incredibly
complicated problem, searching through all possible routes, each with potentially dozens of
twists and turns, to find the best one. In this section, we’ll actually learn the basic process
that underlies the way that Google Maps and similar programs do this.

To begin, remember that in the first section of this chapter, we discussed weighted graphs,
like the one below, where each edge has a cost or weight associated with it. In the context
of mapping software, each edge represents a road or street between two intersections, and the
weight could represent either the distance between the intersections or the time required to
travel along that edge.

1

2

3

4

5

6

7

8

0.14

0.63

0.54

0.31

0.35

0.30

0.31

0.47

0.54

0.54

0.43

0.54

0.62

0.37

In other applications, the cost could actually represent cost; for instance, we could draw a
travel network where each edge represented a flight between two cities, and the edge weights
could be the price of each airline ticket.

In this section, we’ll address two different questions related to finding the shortest path
through a graph, meaning the path with the lowest total weight. For instance, in the graph
above, the path 3→ 4→ 6→ 8 would have a total weight of

0.35 + 0.54 + 0.62 = 1.51

We call this the length of this path. Notice that we aren’t using length here to refer to the
number of edges on the path, and certainly not to the actual drawn length of the lines, since
those are arbitrary.

The two questions we’ll consider are what we will call here the Mail Delivery Problem
and the Navigation Problem.
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In the Mail Delivery Problem, the goal is to visit every node in
the graph using the shortest path possible. This is like a postal
worker who must drop off mail in every mailbox along their route,
and they would like to do so with as little driving as possible, to
save both time and fuel.

In the Navigation Problem, the goal is to get from one point
to another along the shortest route. In this problem, there’s no
need to visit every node; the only goal is to get to the destination,
again with the lowest possible total cost.

The Mail Delivery Problem is also called the Traveling Salesperson Problem, and it is a famous
problem in mathematics and computer science.

To tackle these problems, we’ll learn about two algorithms:An algorithm is simply a
process, or set of steps, used to

accomplish a goal; an
algorithm can be thought of as

a recipe. For instance, long
division is an algorithm used

to divide two numbers. In
most algorithms, there is some
repetition or cycling; you can

see this if you use long
division.

Algorithms are a common
topic in computer science

(which is one of the fields that
uses graph theory the most);
most programs can be called
algorithms, in the sense that
they describe a sequence of

commands for the computer to
follow.

1. To solve the Mail Delivery Problem, we’ll use the Nearest Neighbor Algorithm

2. For the Navigation Problem, we’ll use Dijkstra’s Algorithm, named for a Dutch com-
puter scientist.

Mail Delivery - The Nearest Neighbor Algorithm
The most straightforward way to approach this problem of visiting every node with the shortest
path is to check all the possibilities. Let’s use the example of 5 cities in Maryland: Frederick,
Baltimore, Annapolis, Columbia, and Rockville. For simplicity, we’ll use the straight-line
distance between them, shown on the graph below in miles.

Frederick

Baltimore

Annapolis

Columbia

Rockville

4534

28
14

21
19

24

35

34

57

Instead of this graph, we could also use a table like the following one to show the distances
between all the cities:

Frederick Baltimore Annapolis Columbia Rockville
Frederick – 45 57 34 28
Baltimore 45 – 21 14 34
Annapolis 57 21 – 24 35
Columbia 34 14 24 – 19
Rockville 28 34 35 19 –

In order to read this table to find the distance between two cities, locate the column for one
city and the row for the other city, and the distance is at the intersection (the dashes represent
no distance). Notice the symmetry in the table: the distance between Frederick and Baltimore
is the same as the distance between Baltimore and Frederick.
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Now, notice that this is a complete graph, meaning that we can travel from any city to any
other. This is realistic for a mail delivery van or salesperson, but it means that there are many
possible paths. In fact, ignoring reverse paths (meaning that we’ll treat Frederick→ Baltimore
→ Columbia and Columbia → Baltimore → Frederick as the same route), there are a total of
12 ways to travel through this network from any given city.

Let’s assume we start and end in Frederick; here are the 12 possible circuits, with the total
distance listed for each (abbreviating each city with the first letter of its name):

Route Total Distance (miles)

F → B → A→ R→ C → F 154
F → B → A→ C → R→ F 137
F → B → C → R→ A→ F 170
F → B → C → A→ R→ F 146
F → B → R→ C → A→ F 179
F → B → R→ A→ C → F 172
F → R→ B → A→ C → F 141
F → R→ B → C → A→ F 157
F → R→ C → B → A→ F 139
F → R→ A→ B → C → F 132
F → A→ R→ B → C → F 174
F → A→ B → R→ C → F 165

The shortest possible path is near the bottom of the list: traveling along the route Frederick
→ Rockville→ Annapolis→ Baltimore→ Columbia→ Frederick is the best option, for a total
distance of 132 miles (47 miles shorter than the worst case).

Now, the obvious downside of this method is that it is incredibly tedious to do. The more
serious problem is that as the number of cities increases, the number of possible paths explodes,
making this brute-force approach impractical. For instance, if we used 25 stops (a small number
for a local mail delivery), there would be so many possibilities that if we could check one path
every nanosecond, it would take about ten million years to find the lengths of all of them.
Since we don’t have that kind of time, we need another approach, and for that, we turn to the
nearest neighbor algorithm.

Nearest Neighbor Algorithm

At each step, go to the nearest unvisited node. Repeat until all nodes have been visited.

This does not generally give the absolute best result, but it is an easy way to get close.

The nearest neighbor algorithm is an example of a greedy algorithm, meaning that it takes
the best option at each step without taking a larger view into account.

NEAREST NEIGHBOR ALGORITHM EXAMPLE 1

Use the nearest neighbor algorithm to find a possible minimum circuit through the
Maryland cities, starting and ending at Frederick.

SolutionStarting at Frederick, the closest city is Rockville. Once we get to Rockville, the closest
city (besides Frederick, since we’ve already been there), is Columbia, so we go there.
From there, Baltimore is the closest remaining city, which just leaves Annapolis before
we return to Frederick:

Circuit: F → R→ C → B → A→ F

The

b

a

e

d c

7
8

13 6

5

11 3
12 9

10

total distance is 139 miles; notice that while this isn’t the best possible path, it is
the third best, only 7 miles longer than the optimal one. And the advantage is obvious;
this process was much quicker and simpler than the brute force approach.

Using the graph shown in the margin, use the nearest neighbor algorithm to find a
possible minimum circuit starting at a, then repeat this starting at b and starting at c.

https://www.youtube.com/watch?v=G-9trQ6KjVg&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=8
https://www.youtube.com/watch?v=G-9trQ6KjVg&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=8
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Navigation - Dijkstra’s Algorithm
Edsger Dijkstra

Edsger Dijkstra in 2002
CC BY-SA 3.0, Hamilton Richards

(pronounced DIKE-stra) was a Dutch computer scientist before there was such
a thing (before there were computer scientists, that is, not before there were Dutch people). In
the 1950s, when he got married, he was required to put his profession on the application for a
marriage license, and when he wrote “programmer,” the authorities made him change it, since
there was no such profession. Instead, he stated that he was a theoretical physicist, which was
his first course of study.

Dijkstra was brilliant, and he went on to lay much of the foundation for modern computer
science. One of the problems he studied was this problem of navigation, finding the shortest
path between two points on a graph. His solution has been applied to many fields, including
robotics (navigating a robot around obstacles), transportation, and even games (finding an
optimal solution for a Rubik’s cube, for instance).

Dijkstra’s algorithm is more complicated than the nearest neighbor algorithm, at least at
first. The actual steps, though, are very simple mathematically. Before we give the full
algorithm, let’s do a simple example to illustrate how it works. Start with the graph below:

a

b c

d

ef

4

3

5

2

3

2

3

Now, suppose we want to travel from a to d. This graph is simple enough that we could
probably spot the shortest path just by looking at it, but let’s illustrate a more systematic
process.

Essentially, what the process will do is find the minimum distance (and shortest path) from
a to every other point, so once we’re done, we just look at the result for d. As we go, we’ll
keep track of the shortest path to a particular point, and use that to move forward one more
step. For instance,

a

b c

d

ef

4

3

4

3
5

2

3
2

3

once we know the shortest path to c, we know that we can find the shortest
path to d that passes through c by adding 3 for the path from c to d.

If we start at a, we have two options: go to b (4) or to f (3). We can keep track of these in
a table like this:

Node Minimum Distance from a Shortest Path from a

b 4 a→ b
f 3 a→ f

Now, if we take another step, we can get to c (through either b or f) and e (through f).
Since there’s only one option for e, let’s start there: we can go through f (at a cost of 3) and
on to e (another 3) for a total cost of 6. Let’s add that to the table:

a

b c

d

ef

4

3 6

4

3
5

2

3
2

3

Node Minimum Distance from a Shortest Path from a

b 4 a→ b

e 6 a → f → e
f 3 a→ f

For c, we have two options: (1) go through b, with a total cost of 6 (the 4 to get to b, plus
the 2 to go from b to c), or (2) go through f , with a total cost of 8. Of these, we choose the
first option, since it has a lower cost; add that to the table:

Node

a

b c

d

ef

4

3 6

6

4

3
5

2

3
2

3

Minimum Distance from a Shortest Path from a

b 4 a→ b

c 6 a → b → c
e 6 a→ f → e
f 3 a→ f

Our last step ended at either c or e, so one more step from either of them will take us to
d. Since both are at a minimum distance of 6 from a, the best path to d will be the one going
through e, since that only requires adding 2 to get to d, instead of the 3 required from c. Thus,
the optimal path from a to d is

a→ f → e→ d

which covers a total distance of 8.
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When we actually state Dijkstra’s algorithm, it is written in a slightly different form, but
the process is what we just outlined: by keeping track of the shortest path from the starting
point to all the intermediate nodes, we can move through the graph in waves, so we don’t have
to evaluate all possible paths.

Dijkstra’s Algorithm

To find the shortest path from the origin to the destination:

1. First, set the initial distances (from the origin) for every node:

• The distance at the origin is 0.
• All other distances are infinity (∞) to begin (so that when we find the first

real distance, it will be smaller, and we can update this value).

2. Next, pick the node (from the ones that we haven’t evaluated yet) with the smallest
current distance:

• Update the distances to all its neighbors; if the new distance is shorter than
the previous one, replace the old with the new.

• Check off that node.

3. Repeat step 2 until you reach the destination.

DIJKSTRA’S ALGORITHM EXAMPLE 2

Use Dijkstra’s algorithm to find the shortest path between a and c in the graph shown
below.

a

b

c

de

f

14

7

9

9
2

6

15

1110

SolutionTo keep track of the distances, we’ll build a table, and update it at every step. First,
we set the initial distances for each point (0 at a, infinity everywhere else).

Checked? Node Minimum Distance from a Shortest Path from a

a 0
b ∞
c ∞
d ∞
e ∞
f ∞

Next, we select the point with the smallest current distance–that would be a–and
update the distance to all its neighbors. Since a has b, e, and f as neighbors, we will
update the distance and path for each of these three. The distance will be the current
distance at a (0) plus the distance to the new point, and the path will be the path to
a (nothing) with the new segment added on. Once we do all that, we can check off a.

https://www.youtube.com/watch?v=ziS-j9eBoIo&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=9
https://www.youtube.com/watch?v=ziS-j9eBoIo&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=9
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Checked?

a

b

c

de

f

14

7

9

14

7

9

92

6

15

1110

Node Min. Distance from a Shortest Path from a

X a 0
b ��∞ 14 a→ b
c ∞
d ∞
e ��∞ 7 a→ e
f ��∞ 9 a→ f

Now we simply repeat this process: select the unchecked point with the smallest
distance–which is now e–and update its neighbors, then check it off. By the time we
get to c, we will be guaranteed to have found the shortest path from a to c.

The (unchecked) neighbors of e are d and f , so for each of them, add the distance to
that point from e together with the current distance at e (7). If that is smaller than
the current distance at that point, update the distance and path; if not, do nothing
there.

For d, this results in a distance of 7+15 = 22, which is smaller than∞. For f , however,
this gives a distance of 7 + 10 = 17, which is larger than the current distance there, so
we’ll leave the row for f unchanged.

Checked?

a

b

c

de

f

14

7

9

22

14

7

9

92

6

15

1110

Node Min. Distance from a Shortest Path from a

X a 0
b 14 a→ b
c ∞
d ��∞ 22 a→ e→ d

X e 7 a→ e
f 9 a→ f

Next, update the neighbors of f (b and d, since a and e have already been checked):
the new distance to b is 11, which is smaller than the 14 currently marked there, and
the new distance to d is 20, which is also smaller than the current 22 for that point.

Checked? Node Min. Distance from a Shortest Path from a

X a

a

b

c

de

f

�
�14

7

9

�
�22

11

20

14

7

9

92

6

15

1110

0
b ��14 11 a→ f → b
c ∞
d ��22 20 a→ f → d

X e 7 a→ e
X f 9 a→ f

After checking b, the table looks like this:

Checked? Node Min. Distance from a Shortest Path from a

X a 0
X b 11 a→ f → b

c ��∞ 20 a→ f → b→ c
d 20 a→ f → d

X e

a

b

c

de

f

7

9

11

20

2014

7

9

92

6

15

1110

7 a→ e
X f 9 a→ f

Finally, we’ll check d (the new distance to c is 26, which is larger than its current
distance):

Checked? Node Min. Distance from a Shortest Path from a

X a 0
X b 11 a→ f → b

c 20 a→ f → b→ c
X d 20 a→ f → d
X e 7 a→ e
X f 9 a→ f

The shortest path from a to c, then, is a→ f → b→ c , with a total length of 20.
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This process can look complicated at first, but with a little practice, it goes pretty quickly.
Notice that the actual math we’re doing is very simple; we just add two numbers at each step
and compare them to a previous result.

For another (abbreviated) example, let’s go back to the graph at the beginning of the section,
and find the shortest path from 1 to 7 using Dijkstra’s algorithm.

1

2

3

4

5

6

7

8

0.14

0.63

0.54

0.31

0.35

0.30

0.31

0.47

0.54

0.54

0.43

0.54

0.62

0.37

You can try this one on your own; when you do, you should end up with a table that looks
like this:

Checked? Node Min. Distance from 1 Shortest Path from 1

X 1 0

X 2 0.14 1 → 2

X 3 0.54 1 → 3

X 4 0.45 1 → 2 → 4

X 5 0.47 1 → 5

X 6 0.84 1 → 3 → 6

X 7 0.88 1 → 2 → 4 → 7

X 8 1.25 1 → 2 → 4 → 7 → 8

The shortest path from 1 to 7 is 1 → 2 → 4 → 7 , which has a total length of
0.88.

TRY ITUse Dijkstra’s algorithm to find the shortest path between a and z in the graph shown
below, and the length of that path.

a

b

c

d

e

f

g

h

z

5

3

7

3

2

1

7

3

2

1

3

4

2

1

3

2

5

http://hartleymath.com/versatilemath/tryit/#/graph-theory--dijkstras-algorithm
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Exercises 8.3

In problems 1-3, use the nearest neighbor algorithm to find a minimum possible circuit through each graph starting at a.

1.

a

b

c

d

36

7 2

4

5

2.

a

b

c

d e

310

6

1

7

8

4
9 2
5

3.

a

bc

d

e f
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4

5

1

4
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3
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4

In problems 4–6, use Dijkstra’s algorithm to find the shortest path through each graph between a and z.

4.

a

b

c

d

e

z
2

3

5

2

5

1
2

4

5.

a

b

c

d

e

f

g

z
4

3

5
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6

1

5

5
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6.

a

b

c

z e

73

5 4

9

3

6
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7. The graph below shows the distances between cities. Use
the graph to answer the questions below.

Denver

Minneapolis

St. Louis

Chicago

Indianapolis

Nashville

Dallas Atlanta

Detroit
New
York

795

690

665

360

480
245

165
250

255

260

215

640

480

620
715

730

(a) Use the nearest neighbor algorithm to find a path that
starts in Chicago and visits all the cities shown, while
trying to minimize distance traveled.

(b) What is the total length of the path found in part (a)?

(c) Find the shortest path between Dallas and New York.
What is the length of this path?

(d) Find the shortest path between Minneapolis and At-
lanta. What is the length of this path?

8. The graph below shows the cost of flights between cities.
Use the graph to answer the questions below.

Denver

Minneapolis

St. Louis

Chicago

Indianapolis

Nashville

Dallas Atlanta

Detroit
New
York

$137

$126

$123

$90

$103
$77

$68
$80

$79

$80

$74

$120

$102

$118
$129

$130

(a) Use the nearest neighbor algorithm to find a path that
starts in St. Louis and visits all the cities shown, while
trying to minimize the cost of travel.

(b) What is the total cost of the path found in part (a)?

(c) Find the cheapest path between Nashville and Denver.
What is the cost of this path?

(d) Find the cheapest path between Detroit and Denver.
What is the cost of this path?

https://www.myopenmath.com/index.php
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9. A salesperson has responsibility over four cities in Mary-
land and northern Virginia, and they compiled the distances
between them; these distances are shown in the table below.
If the salesperson needs to visit all four cities, and is cur-
rently in Ellicott City, use the nearest neighbor algorithm to
plan their route. How far will they travel in total along this
path?

Annapolis Alexandria Ellicott City Reston
Annapolis – 45 26 46
Alexandria 45 – 37 19
Ellicott City 26 37 – 35
Reston 46 19 35 –

10. An American tourist is traveling through Great Britain,
and would like to visit five cities. The tourist has estimated
the cost of a train ticket between pairs of these cities, and
the results are shown in the table below. Plan a route that
will take the tourist through all five cities with as little cost
as possible, starting and ending in London. Use the nearest
neighbor algorithm; what is the cost of this journey?

London Edinburgh York Cardiff Chester
London – $175 $110 $65 $115
Edinburgh $175 – $95 $195 $105
York $110 $95 – $145 $60
Cardiff $65 $195 $145 – $85
Chester $115 $105 $60 $85 –
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SECTION 8.4 Trees

If you’ve ever studied your genealogy, one of the most basic ways to visualize it is by using a
family tree, like the one shown below for a portion of the British royal family. In this tree, each
node represents a member of the royal family by birth. If that member has children, the other
parent of those children is shown in red.

Elizabeth II,
Queen of England
Philip, Duke of

Edinburgh

Charles, Prince of
Wales

Diana Spencer
Anne, Princess

Royal

Andrew, Duke of
York

Sarah Ferguson
Edward, Earl
of Wessex

William, Duke of
Cambridge
Catherine
Middleton

Harry, Duke of
Sussex

Beatrice Eugenie

George Charlotte Louis

The terminology of a tree and branches is clear, because the family tree above has the same
structure as a physical tree, with branches that lead to smaller branches, and so on.

In graph theory, we borrow this term of a tree for a graph that has this same structure.
Now, it can be hard to identify the defining feature of a tree branch, but notice that the main
pattern is that none of the branches loop back to reconnect with the rest of the tree; once you
head down a particular edge, there’s no way to get back where you were without returning
along that edge. This leads us to the definition of a tree (watch out; the definition is so terse
that it can be hard to grasp at first).
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Trees

A tree is a connected graph with no simple circuits.

Let’s make sure that makes sense: a tree is a graph where a path down a particular branch
won’t find itself looping back and reconnecting; that path is only connected to the rest of the
graph at one point. Therefore, there can’t be any simple circuits, because to return to a point
that we left earlier, we’d have to retrace our steps.

Now, it turns out that there are a few equivalent ways to identify a tree. Each of the
following is an equivalent definition for a tree: a graph G is a tree if

• There is a unique simple path between any two nodes (not particularly helpful for iden-
tification).

• G is connected, but barely; removing any edge would make it disconnected (think about
cutting a branch from a tree–that branch doesn’t hang there, connected at a another
point). This can be easy to check visually: see if you can find any edges that you can
remove and still leave the graph connected.

• G is connected, and there are n − 1 edges, where n is the number of nodes (this one is
easy to check too, since it just involves counting).

IDENTIFYING TREES EXAMPLE 1

Which of the following are trees?

a b

c d

e f

a b

c d

e f

a b

c d

e f

g h

(a) (b) (c)

Solution

(a) This is a tree, because it is connected, but removing any edge would create
disconnected components. We could also count the nodes and edges, and note
that there is one fewer edge than the number of nodes.

(b) This is not a tree. Again, we could count the nodes and edges, or try removing
edges to see if any leave it connected, but we can also note that there are simple
circuits, like a→ d→ e→ b→ a in this graph.

(c) This is not a tree, because it is not connected. However, since each of the com-
ponents are trees themselves, this could be called a forest.

Our conclusion is that (a) is the only tree .

There for instance, trees can be used
to describe games; chess
programs do this, as one
example

are many, many applications of trees, but we will only discuss two of them: binary
search trees and spanning trees.

https://www.youtube.com/watch?v=NNRIIWfwauE&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=10
https://www.youtube.com/watch?v=NNRIIWfwauE&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=10


410 CHAPTER 8 Graph Theory

Binary Search Trees
Searching through a list is a hard problem. If you were handed a randomly sorted list of names
and told to find a particular one, you’d have to simply read through every name, and you could
expect on average to have to read half of the list before finding the name. Think of how often
you use a search function in your life, and it becomes obvious that we need searching to be as
efficient as possible.

One way to make searching more efficient is to sort the items. Say, for example, the list of
names you were given was ordered alphabetically; would that make your job easier? Of course
it would. Say, for instance, you were looking for the name Kayla: you would know to look near
the middle of the list, and if your eye fell on the M’s, you’d know to go backward. Similarly,
if you started at the G’s, you’d know to go forward.

This is the basic concept of a binary search tree; the word binary simply refers to two pos-
sibilities. In the alphabetically ordered list, you have two options: go forward or go backward,
so in that case, you’re really doing a binary search.

It turns out that there is an efficient way to use a tree to encode an ordered list like this,
and there are advantages to this that have to do with the way that computers can read the
tree. Below is an example of a tree that can be used to search for names in the following list:
Leah, Callista, Priya, Lucy, Jason, Sergio, Sonia, Dennis, and Adrian.

Leah

Callista Priya

Adrian Jason Lucy Sergio

Dennis Sonia

Notice the structure of this tree: first of all,Binary Tree: each node has
one parent and at most two

children

it is called a binary tree because at each level,
a node will have at most two branches coming out of it and going down to the next level (we
can say that each node will have at most two children, if we view this like a family tree).

Next, the reason this tree can be used for searching is that it is sorted: notice that at
each node, if you turn to the left and follow a branching path, all the names along that path
will be before the original one, and if you go to the right, all the names will come after it,
alphabetically. For instance, if you start with Priya, on the left-hand branch you’ll find Lucy
(before Priya alphabetically), and on the right-hand branch, you’ll find Sergio and Sonia (both
after Priya alphabetically). This is what makes it a binary search tree.

Say you are searching for the name Jason. Start at the top of the tree, and compare Jason
to the name there: Leah. Since Jason comes before Leah alphabetically, we know Jason will
be in the left branch, so head to the left. Now, pause here, and notice that we’ve immediately
eliminated about half of the possible names in the list from consideration; we don’t have to
search through those. This is the major feature of binary search trees, since by eliminating
about half of the remainder of the list at every step, we can hone in on our search term very
quickly.

Back to the search: we’re heading down the left branch, looking for Jason. The next name
we encounter is Callista, and since Jason comes after that alphabetically, we take a turn to the
right, which brings us to our result. Notice that this only took two steps, and we found the
right name out of a list of 9. The efficiency of this method only gets more dramatic as the list
gets bigger.
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BUILDING A BINARY SEARCH TREE EXAMPLE 2

Build a binary search tree for the following list of words, starting with the first word
at the top of the tree:

location, solution, promotion, decision, city, bread,
enthusiasm, writer, signature, criticism

SolutionStart with the word location at the top. To add the word solution, note that it comes
after location alphabetically, so create a node to the right.

location

solution

For the next word, promotion, start again by comparing it to the top word, location.
Since it comes after that, go to the right, and compare it to the word there, solution.
This time, it comes before the comparison word, so we turn to the left, and since there’s
nothing there, we drop promotion in that spot.

location

solution

promotion

If we continue this process, we’ll eventually get the tree shown below (try it yourself
and see if you can get the same tree).

location

decision solution

city enthusiasm

promotion

writer

criticism signaturebread

TRY ITBuild a binary search tree for the following list of words, starting with the first word:

foster, dry, inspire, feign, courage,
persist, reactor, inn, advisor, divorce

https://www.youtube.com/watch?v=A31V6w6qtus&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=11
https://www.youtube.com/watch?v=A31V6w6qtus&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=11
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SEARCHING WITH A BINARY SEARCH TREEEXAMPLE 3

Using the binary tree created in the last example, shown below, search for the word
criticism. How many steps (comparisons) are needed to find it?

location

decision solution

city enthusiasm

promotion

writer

criticism signaturebread

Solution First, compare criticism to the word at the top of the tree, location. Since our word
comes before it, turn to the left. The next comparison is to decision; again, our word
is before it, so we go to the left and find city. This time, our word comes after it, so
we turn to the right and find criticism.

location

decision solution

city enthusiasm

promotion

writer

criticism signaturebread

Notice that we used 3 comparisons : we compared our word to location, decision, and
city.

Spanning Trees
Suppose the graph below represents a network of roads, and your job is to plow the snow from
these roads.

a
b

c

d

e

f

We’ve thought about a situation like this before, when we discussed Euler paths and looked
for a way to plow all the roads as efficiently as possible. Now, however, let’s ask a different
question: if we have limited resources, what roads do we need to plow at a minimum so that
no one gets stranded? In other words, what edges can we delete from this graph while leaving
it connected?

https://www.youtube.com/watch?v=O_zBszBFcTQ&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=12
https://www.youtube.com/watch?v=O_zBszBFcTQ&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=12
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If you notice, that brings us back to the definition of a tree: once we delete edges until we
can’t do so anymore without disconnecting the graph, the result will be a tree. There are many
possibilities for how to do this; as an example, let’s delete the edges marked below in red.

a
b

c

d

e

f

The result will be this tree:

a
b

c

d

e

f

This is an example of a spanning tree.

Spanning Trees

A spanning tree of an undirected as long as a graph is connected
and undirected, it will have at
least one spanning tree

graph is a tree that contains all the nodes of the
graph.

Spanning trees are valuable when we want to be efficient in our use of connections, while still
ensuring that all the nodes are connected. For instance, if we were building a communication
network, we may want to lay as few cables as possible, in which case a spanning tree would come
in handy. Every time you use the Internet, the routers and switches between you and whatever
server you’re connecting to use a spanning tree to avoid loops and make your connection as
fast as possible.

Finding a Spanning Tree for a Weighted Graph: if we simply need to find any spanning
tree, that’s pretty simple: just start deleting edges until you can’t delete any more without
disconnecting the graph. However, if we add weights to the graph, the problem gets more
interesting. For instance, consider the graph below.

a

b c

d

ef

g

6

3

7

3

5

2

3

5

3

4

66

Let’s say the weight of each edge is the cost of the cable between those two nodes. To reduce
costs, we’re going to build the minimum number of edges, so we’re looking for a spanning tree.
However, some spanning trees are going to be cheaper than others, and we want to find the
least expensive spanning tree possible. There are a few ways to do this, but we’ll use one called
Kruskal’s algorithm, which is pretty straightforward.
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Kruskal’s Algorithm

To build a minimal spanning tree for a graph, start with the edge with the lowest
weight. Then choose the edge with the next lowest weight, and as long as adding that
edge would not form a circuit, add it. Continue doing this until you have a spanning
tree (stop as soon as all the nodes are included).

Let’s see this in action, using the graph we just saw. The cheapest edge is the one connecting
c and d, so we’ll start with that one (we’ll color it red to keep track of it).
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The next cheapest edge has a weight of 3; there are four such edges, but notice that if we
add all of them, we’ll form a circuit c→ d→ e→ c. Therefore, let’s add three of them, leaving
out the edge between d and e:
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The next lowest weight is 4: add that edge (between e and f).
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Finally, there are two edges with a weight of 5, but if we add both of them, circuits will be
possible (g → b → f → e → c → g, for example). Therefore, we’ll just add one of them (it
doesn’t matter which we pick): we’ll add the edge between c and g. The spanning tree looks
like this:
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FINDING A MINIMAL SPANNING TREE EXAMPLE 4

The graph below shows a network of roads between towns in Nevada. The roads shown
on the graph are unpaved, and the weights represent the length of each road. Which
roads should be paved so that there is a path of paved roads between every pair of
towns, and the total length of paved road is as short as possible? In other words, find
a minimal spanning tree for this graph.
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We’ll leave the details of the solution unwritten, but if you follow the process outlined
above, one possible minimal spanning tree will look like this:
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Find a minimal spanning tree for the graph shown in the margin.

https://www.youtube.com/watch?v=BYTky8IhroE&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=13
https://www.youtube.com/watch?v=BYTky8IhroE&list=PLfmpjsIzhztst_PxJXo574wshSwxU9Yg_&index=13
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Exercises 8.4

1. Which of the following graphs are trees?

(a) (b) (c) (d)

2. Which of the following graphs are trees?

(a) (b) (c) (d)

3. Build a binary search tree for the following numbers,
sorted by value: 15, 29, 9, 11, 2, 31, 18, 3, 14, and 6. Add
numbers to this tree in the order in which they are listed.

(a) How many comparisons are needed to locate 11 in this
tree, starting from the top?

(b) How many comparisons are needed to add 17 to this
tree?

(c) What is the parent of the node labeled 2?

(d) List the children of the node labeled 29.

4. Build a binary search tree for the following words, sorted
alphabetically: gaffe, rebellion, fool, elaborate, spread, joke,
freedom, stroke, guideline, and aware. Add words to this tree
in the order in which they are listed.

(a) How many comparisons are needed to locate spread in
this tree, starting from the top?

(b) How many comparisons are needed to add the word
thorough to this tree?

(c) What is the parent of the node labeled elaborate?

(d) List the children of the node labeled fool.

5. Build a binary search tree for the following list of coun-
tries, sorting them by population. Add countries to this tree
in the order in which they are listed.

Country Population (millions)

Philippines 108
Vietnam 96
Bangladesh 163
France 65
Mexico 128
Germany 84
Tanzania 58
Nigeria 201
Russia 146
Italy 61

(a) What is the parent node of Tanzania?

(b) How many children does the Mexico node have?

(c) How many comparisons are needed to locate Nigeria in
this tree, starting from the top?

6. Build a binary search tree for the following list of Major
League Baseball teams, sorting them by total payroll. Add
teams to this tree in the order in which they are listed.

Team Payroll (millions)

Cardinals 62
Cubs 70
Rangers 53
Reds 51
Phillies 63
Rockies 46
Red Sox 43
Brewers 37
Royals 32
Mariners 27

(a) What is the parent of the Phillies node?

(b) List the children of the Red Sox node.

(c) How many comparisons are needed to locate the Royals
in this tree, starting from the top?

https://www.myopenmath.com/index.php
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In problems 7–9, use Kruskal’s algorithm to find a minimum spanning tree for the given graph.

7.
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10. A company requires reliable intranet and phone con-
nectivity between their five offices (labeled A through E),
so they decide to lease dedicated lines from the phone com-
pany. The phone company will charge for each link made.
The graph below shows the costs, in thousands of dollars per
year, for each link.
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In order to save on costs, design a network that will connect
these five offices with the lowest possible cost.

11. A maintenance team is responsible for a group of five
buildings on campus. These buildings are shown in the graph
below, with the distance given between each pair of buildings.
After a blizzard, the team is tasked with clearing the snow,
but there is not enough time to clear all the walkways.
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Which walkways should the maintenance team plow in or-
der to connect all the buildings, while minimizing the time
needed to do so (really, by minimizing the distance)?

12. A power company needs to lay updated distribution lines connecting eight cities in Virginia to the power grid. The
distances between these cities are given in the table below. Design a network that will minimize the amount of new line.

Purcellville Leesburg Middleburg Chantilly Sterling McLean Arlington Annandale
Purcellville – 8 11 23 19 32 37 35
Leesburg 8 – 14 17 10 24 29 27
Middleburg 11 14 – 18 16 30 34 31
Chantilly 23 17 18 – 8 13 18 13
Sterling 19 10 16 8 – 15 20 17
McLean 32 24 30 13 15 – 5 7
Arlington 37 29 34 18 20 5 – 6
Annandale 35 27 31 13 17 7 6 –

What is the total required length of line that must be laid?
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