Introduction
Recall what we know about spherical coordinates :
x = ρ cos θ sin ϕ y = ρ sin θ sin ϕ z = ρ cos ϕ ρ 2 = x 2 + y 2 + y 2 \begin{aligned}
x &= \rho \cos \theta \sin \phi\
y &= \rho \sin \theta \sin \phi\
z &= \rho \cos \phi\
\
\rho^2 &= x^2+y^2+y^2
\end{aligned} x y z ρ 2 = ρ cos θ sin ϕ = ρ sin θ sin ϕ = ρ cos ϕ = x 2 + y 2 + y 2
Therefore, a triple integral in rectangular coordinates can be rewritten in terms of spherical coordinates:
∭ D f ( x , y , z ) d V = ∭ D f ( ρ , ϕ , θ ) ρ 2 sin ϕ d ρ d ϕ d θ \iiint_D f(x,y,z)\ dV = \iiint_D f(\rho, \phi, \theta)\ \rho^2 \sin \phi\ d\rho\ d\phi\ d\theta ∭ D f ( x , y , z ) d V = ∭ D f ( ρ , ϕ , θ ) ρ 2 sin ϕ d ρ d ϕ d θ
We'll tend to use spherical coordinates when we encounter a triple integral with x 2 + y 2 + z 2 x^2+y^2+z^2 x 2 + y 2 + z 2 somewhere.
Examples
Convert the following integral to spherical coordinates and evaluate.
∭ D ( x 2 + y 2 + z 2 ) − 3 / 2 d V \iiint_D (x^2+y^2+z^2)^{-3/2}\ dV ∭ D ( x 2 + y 2 + z 2 ) − 3 / 2 d V
where D D D is the region in the first octant between two spheres of radius 1 1 1 and 2 2 2 centered at the origin.
Solution
∭ D ( x 2 + y 2 + z 2 ) − 3 / 2 d V = ∫ 0 π / 2 ∫ 0 π / 2 ∫ 1 2 ρ − 3 ⋅ ρ 2 sin ϕ d ρ d ϕ d θ = ∫ 0 π / 2 ∫ 0 π / 2 sin ϕ ( ln ρ ) ∣ 1 2 d ϕ d θ = ∫ 0 π / 2 ∫ 0 π / 2 sin ϕ ⋅ ln 2 d ϕ d θ = ∫ 0 π / 2 − ln 2 ⋅ cos ϕ ∣ 0 π / 2 d θ = ∫ 0 π / 2 ln 2 d θ = π 2 ⋅ ln 2 \begin{aligned}
\iiint_D &(x^2+y^2+z^2)^{-3/2}\ dV\
&= \int_0^{\pi/2} \int_0^{\pi/2} \int_1^2 \rho^{-3} \cdot \rho^2 \sin\phi\ d\rho\ d\phi\ d\theta\
&= \int_0^{\pi/2} \int_0^{\pi/2} \sin \phi(\ln \rho) \bigg|_1^2 \ d\phi\ d\theta\
&= \int_0^{\pi/2} \int_0^{\pi/2} \sin \phi \cdot \ln 2 \ d\phi\ d\theta\
&= \int_0^{\pi/2} -\ln 2 \cdot \cos \phi\bigg|_0^{\pi/2} \ d\theta\
&= \int_0^{\pi/2} \ln 2 \ d\theta = \ans{\dfrac{\pi}{2}\cdot \ln 2}
\end{aligned} ∭ D ( x 2 + y 2 + z 2 ) − 3 / 2 d V = ∫ 0 π / 2 ∫ 0 π / 2 ∫ 1 2 ρ − 3 ⋅ ρ 2 sin ϕ d ρ d ϕ d θ = ∫ 0 π / 2 ∫ 0 π / 2 sin ϕ ( ln ρ ) ∣ ∣ ∣ ∣ 1 2 d ϕ d θ = ∫ 0 π / 2 ∫ 0 π / 2 sin ϕ ⋅ ln 2 d ϕ d θ = ∫ 0 π / 2 − ln 2 ⋅ cos ϕ ∣ ∣ ∣ ∣ 0 π / 2 d θ = ∫ 0 π / 2 ln 2 d θ = 2 π ⋅ ln 2
Find the volume of the solid D D D that lies inside the cone ϕ = π 6 \phi = \dfrac{\pi}{6} ϕ = 6 π and inside the sphere ρ = 4 ρ=4 ρ = 4 .
Solution
V = ∫ 0 2 π ∫ 0 π / 6 ∫ 0 4 ρ 2 sin ϕ d ρ d ϕ d θ = ∫ 0 2 π ∫ 0 π / 6 64 3 sin ϕ d ϕ d θ = ∫ 0 2 π − 64 3 ( 3 2 − 1 ) d θ = 128 π 3 − 64 π 3 3 \begin{aligned}
V &= \int_0^{2\pi} \int_0^{\pi/6} \int_0^4 \rho^2 \sin\phi\ d\rho\ d\phi\ d\theta\
&= \int_0^{2\pi} \int_0^{\pi/6} \dfrac{64}{3} \sin\phi\ d\phi\ d\theta\
&= \int_0^{2\pi} -\dfrac{64}{3}\left(\dfrac{\sqrt{3}}{2}-1\right)\ d\theta\
&= \ans{\dfrac{128\pi}{3}-\dfrac{64\pi\sqrt{3}}{3}}
\end{aligned} V = ∫ 0 2 π ∫ 0 π / 6 ∫ 0 4 ρ 2 sin ϕ d ρ d ϕ d θ = ∫ 0 2 π ∫ 0 π / 6 3 6 4 sin ϕ d ϕ d θ = ∫ 0 2 π − 3 6 4 ( 2 3 − 1 ) d θ = 3 1 2 8 π − 3 6 4 π 3