Triple Integrals in Cylindrical Coordinates

Introduction

Now we finally get to use what we covered about cylindrical coordinates.

Cylindrical coordinates diagram

Recall that x=rcosθy=rsinθz=zr=x2+y2θ=tan1yxz=z\begin{aligned} x &= r \cos \theta\ y &= r \sin \theta\ z &= z\ \ r &= \sqrt{x^2+y^2}\ \theta &= \tan^{-1} \dfrac{y}{x}\ z &= z \end{aligned}

Therefore, a triple integral in rectangular coordinates can be rewritten (similar to a double integral in polar coordinates): Df(x,y,z) dV=Df(rcosθ,rsinθ,z) dz r dr dθ\iiint_D f(x,y,z)\ dV = \iiint_D f(r \cos \theta, r \sin \theta, z)\ dz\ r\ dr\ d\theta

Note carefully the rr in the midst of the differentials.

As with double integrals and polar coordinates, we'll tend to use cylindrical coordinates when we encounter a triple integral with x2+y2x^2+y^2 somewhere.

Examples

Convert the following integral to cylindrical coordinates and evaluate. 0228x28x2121+x2+y2 dz dy dx\int_0^{2\sqrt{2}} \int_{-\sqrt{8-x^2}}^{\sqrt{8-x^2}} \int_{-1}^2 \sqrt{1+x^2+y^2}\ dz\ dy\ dx

Solution

Half cylinder

Note that the limits on zz will remain the same, rr will go from 00 to 8=22\sqrt{8} = 2\sqrt{2}, and θθ will go from π/2−π/2 to π/2π/2.

0228x28x2121+x2+y2 dz dy dx=π/2π/2022121+r2r dz dr dθ=π/2π/202231+r2r dr dθ=π/2π/2(1+r2)3/2022 dθ=π/2π/226 dθ=26π\begin{aligned} \int_0^{2\sqrt{2}} \int_{-\sqrt{8-x^2}}^{\sqrt{8-x^2}} \int_{-1}^2 &\sqrt{1+x^2+y^2}\ dz\ dy\ dx\ &= \int_{-\pi/2}^{\pi/2} \int_0^{2\sqrt{2}} \int_{-1}^2 \sqrt{1+r^2} \cdot r\ dz\ dr\ d\theta\ &= \int_{-\pi/2}^{\pi/2} \int_0^{2\sqrt{2}} 3\sqrt{1+r^2} \cdot r\ dr\ d\theta\ &= \int_{-\pi/2}^{\pi/2} (1+r^2)^{3/2} \bigg|0^{2\sqrt{2}}\ d\theta\ &= \int{-\pi/2}^{\pi/2} 26\ d\theta = \ans{26\pi} \end{aligned}

Find the volume of the solid DD bounded by the paraboloid z=4x2y2z=4−x^2−y^2 and the plane z=0z=0.

Solution

V=Dr dz dr dθ=02π0204r2r dz dr dθ=02π024rr3 dr dθ=02π2r214r402 dθ=02π4 dθ=8π\begin{aligned} V &= \iiint_D r\ dz\ dr\ d\theta\ &= \int_0^{2\pi} \int_0^2 \int_0^{4-r^2} r\ dz\ dr\ d\theta\ &= \int_0^{2\pi} \int_0^2 4r-r^3\ dr\ d\theta\ &= \int_0^{2\pi} 2r^2-\dfrac{1}{4}r^4 \bigg|_0^2 \ d\theta\ &= \int_0^{2\pi} 4 \ d\theta = \ans{8\pi} \end{aligned}

  1. Use cylindrical coordinates to evaluate 02π0111r dz dr dθ\displaystyle\int_{0}^{2\pi} \displaystyle\int_{0}^{1} \displaystyle\int_{-1}^{1} r\ dz\ dr\ d\theta.

  2. 2π2\pi

  3. Use cylindrical coordinates to evaluate 111y21y211(x2+y2)3/2 dz dx dy\displaystyle\int_{-1}^{1} \displaystyle\int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \displaystyle\int_{-1}^{1} (x^2+y^2)^{3/2}\ dz\ dx\ dy.

  4. 4π5\dfrac{4\pi}{5}

  5. Use cylindrical coordinates to evaluate 4416x216x2x2+y24dz dy dx\displaystyle\int_{-4}^{4} \displaystyle\int_{-\sqrt{16-x^2}}^{\sqrt{16-x^2}} \displaystyle\int_{\sqrt{x^2+y^2}}^{4} dz\ dy\ dx.

  6. 320π3-\dfrac{320\pi}{3}

  7. Use cylindrical coordinates to find the volume of the solid bounded by the plane z=0z=0 and the hyperboloid z=171+x2+y2z=\sqrt{17}-\sqrt{1+x^2+y^2}

  8. 14π317+2π3\dfrac{14\pi}{3}\cdot\sqrt{17}+\dfrac{2\pi}{3}

  9. Use cylindrical coordinates to find the volume of the solid bounded by the plane z=29z=\sqrt{29} and the hyperboloid z=4+x2+y2.z=\sqrt{4+x^2+y^2}.

  10. (17296+83)2π\left(\dfrac{17\sqrt{29}}{6}+\dfrac{8}{3}\right)2\pi

  11. Use cylindrical coordinates to find the volume of the cylinder in the first octant bounded by the cylinder r=1r=1 and the planes z=xz=x and z=0z=0.

  12. 23\dfrac{2}{3}