Triple Integrals

Introduction

Triple integrals are more difficult (in fact, usually impossible) to picture than double integrals, but the principle is much the same. Instead of integrals like Rf(x,y) dA,\iint_R f(x,y) \ dA, now we'll handle integrals like Df(x,y,z) dV\iiint_D f(x,y,z)\ dV where DD is a 33-dimensional body.

Note

The volume of DD is given by the triple integral Volume =D dz dy dx\textrm{Volume } = \iiint_D\ dz\ dy\ dx

Again, the challenge with triple integrals really lies with finding the limits of integration; once we have those, we simply have to carry out the integration, which usually isn't too complicated.

Evaluate the following triple integral. 020302 dx dy dx\int_0^2 \int_0^3 \int_0^2\ dx\ dy\ dx

Solution

020302 dx dy dx=02032 dy dx=026 dx=12\begin{aligned} \int_0^2 \int_0^3 \int_0^2\ dx\ dy\ dx &= \int_0^2 \int_0^3 2\ dy\ dx\ &= \int_0^2 6\ dx = \ans{12} \end{aligned}

Note that this gives the volume of a 2×3×22×3×2 cube.

Use a triple integral to find the volume of the prism DD in the first octant bounded by the planes y=42xy=4−2x and z=6z=6.

Solution

Note that this prism is D={(x,y,z) : 0x2, 0y42x, 0z6}D={(x,y,z)\ :\ 0 \leq x \leq 2,\ 0 \leq y \leq 4-2x,\ 0 \leq z \leq 6} or D={(x,y,z) : 0x212y, 0y4, 0z6}D={(x,y,z)\ :\ 0 \leq x \leq 2-\dfrac{1}{2}y,\ 0 \leq y \leq 4,\ 0 \leq z \leq 6}

We can write this integral in several ways, all of which give the same answer: V=0602042x dy dx dz=02042x06 dx dy dx=060402y/2 dx dy dz=24\begin{aligned} V &= \int_0^6 \int_0^2 \int_0^{4-2x} \ dy\ dx\ dz\ &= \int_0^2 \int_0^{4-2x} \int_0^6 \ dx\ dy\ dx\ &= \int_0^6 \int_0^4 \int_0^{2-y/2} \ dx\ dy\ dz\ &= \ans{24} \end{aligned}

Notice that in each case, we have to make sure that we use the limits that involve one variable before we integrate with respect to that variable.

  1. Find the volume of the solid in the first octant bounded by the plane 2x+3y+6z=122x+3y+6z=12 and the coordinate planes.

  2. 04063y/20122x3y dz dx dy=06042x/30122x3y dz dy dx=8\displaystyle\int_0^4 \displaystyle\int_0^{6-3y/2} \displaystyle\int_0^{12-2x-3y} \ dz\ dx\ dy = \displaystyle\int_0^6 \displaystyle\int_0^{4-2x/3} \displaystyle\int_0^{12-2x-3y} \ dz\ dy\ dx = 8

Simple Applications

Mass

If the density of a body is a function of position (ρ=f(x,y,z)ρ=f(x,y,z)), then the mass of the body is the integral M=Df(x,y,z) dVM = \iiint_D f(x,y,z)\ dV

If the density function is given by ρ=2zρ=2−z kg/m3^3 for the cube D={(x,y,z) : 0x3, 0y2, 0z1},D={(x,y,z)\ :\ 0 \leq x \leq 3,\ 0 \leq y \leq 2,\ 0 \leq z \leq 1}, find the mass of this cube.

Solution

M=0102032z dx dy dz=010263z dy dz=01126z dz=12z3z201=9 kg\begin{aligned} M &= \int_0^1 \int_0^2 \int_0^3 2-z\ dx\ dy\ dz\ &= \int_0^1 \int_0^2 6-3z\ dy\ dz\ &= \int_0^1 12-6z\ dz\ &= 12z-3z^2 \bigg|_0^1 = \ans{9\ kg} \end{aligned}

Average Value

The average value of f(x,y,z)f(x,y,z) is f=1volume of DDf(x,y,z) dV\overline{f} = \dfrac{1}{\textrm{volume of } D} \iiint_D f(x,y,z)\ dV

Find the average value of f(x,y,z)=250xysin(πz)f(x,y,z)=250xy \sin(πz) over the cube D={(x,y,z) : 0x2, 0y2, 0z1}.D={(x,y,z)\ :\ 0 \leq x \leq 2,\ 0 \leq y \leq 2,\ 0 \leq z \leq 1}.

Solution

f=14010202250xysin(πz) dx dy dz=140102500ysin(πz) dy dz=14011000sin(πz) dz=14[10001πcos(πz)]01=500π\begin{aligned} \overline{f} &= \dfrac{1}{4} \int_0^1 \int_0^2 \int_0^2 250 xy \sin (\pi z) \ dx\ dy\ dz\ &= \dfrac{1}{4} \int_0^1 \int_0^2 500 y \sin (\pi z) \ dy\ dz\ &= \dfrac{1}{4} \int_0^1 1000 \sin (\pi z)\ dz\ &= \dfrac{1}{4} \bigg[ -1000 \cdot \dfrac{1}{\pi} \cos (\pi z) \bigg]_0^1\ &= \ans{\dfrac{500}{\pi}} \end{aligned}

  1. Find the average value of f(x,y,z)=128exyzf(x,y,z) = 128e^{-x-y-z} in the cube D={(x,y,z) : 0xln2,0yln4,0zln8}D = {(x,y,z)\ :\ 0 \leq x \leq \ln 2, 0 \leq y \leq \ln 4, 0 \leq z \leq \ln 8}

  2. 1(ln2)(ln4)(ln8)0ln80ln40ln2128exyz dx dy dz=7(ln2)3\dfrac{1}{(\ln 2)(\ln 4)(\ln 8)}\displaystyle\int_0^{\ln 8} \displaystyle\int_0^{\ln 4} \displaystyle\int_0^{\ln 2} 128e^{-x-y-z}\ dx\ dy\ dz = \dfrac{7}{(\ln 2)^3}

Examples

Evaluate D2x dV\displaystyle\iiint_D 2x\ dV, where D={(x,y,z) : 0y2, 0x4y2, 0zy}.D={(x,y,z)\ :\ 0 \leq y \leq 2,\ 0 \leq x \leq \sqrt{4-y^2},\ 0 \leq z \leq y}.

Solution

0204y20y2x dz dx dy=0204y22xy dx dy=02(4y2)y dy=2y14y402=4\begin{aligned} \int_0^2 \int_0^{\sqrt{4-y^2}} \int_0^y &2x\ dz\ dx\ dy\ &= \int_0^2 \int_0^{\sqrt{4-y^2}} 2xy \ dx\ dy\ &= \int_0^2 (4-y^2)y\ dy\ &= 2y-\dfrac{1}{4}y^4 \bigg|_0^2 = \ans{4} \end{aligned}

Find the volume of the solid in the first octant formed when the cylinder z=sinyz=\sin y for 0yπ0≤y≤π is sliced by the planes y=xy=x and x=0x=0.

Solution

Note that D={(x,y,z) : 0xy, 0yπ, 0zsiny}.D={(x,y,z)\ :\ 0 \leq x \leq y,\ 0 \leq y \leq \pi,\ 0 \leq z \leq \sin y}.

The volume, then, is given by V=0π0y0siny dz dx dy=0π0ysiny dx dy=0πysiny dy=ycosy+siny0π    (using Integration by Parts)=π\begin{aligned} V &= \int_0^\pi \int_0^y \int_0^{\sin y} \ dz\ dx\ dy\ &= \int_0^\pi \int_0^y \sin y\ dx\ dy\ &= \int_0^\pi y \sin y\ dy\ &= -y\cos y + \sin y \bigg|_0^\pi \ \ \ \textrm{ (using Integration by Parts)}\ &= \ans{\pi} \end{aligned}

Find the volume of the prism in the first octant bounded by z=24xz=2−4x and y=8y=8.

Prism

Solution

Note that D={(x,y,z) : 0x1/2, 0y8, 0z24x}.D={(x,y,z)\ :\ 0 \leq x \leq 1/2,\ 0 \leq y \leq 8,\ 0 \leq z \leq 2-4x}.

The volume, then, is given by V=0801/2024x dz dx dy=0801/224x dx dy=08[2x2x2]01/2 dy=0812 dy=4\begin{aligned} V &= \int_0^8 \int_0^{1/2} \int_0^{2-4x} \ dz\ dx\ dy\ &= \int_0^8 \int_0^{1/2} 2-4x\ dx\ dy\ &= \int_0^8 \bigg[ 2x-2x^2 \bigg]_0^{1/2}\ dy\ &= \int_0^8 \dfrac{1}{2}\ dy = \ans{4} \end{aligned}

Find the volume of the wedge bounded by the parabolic cylinder y=x2y=x^2 and the planes z=3yz=3−y and z=0z=0.

Rounded wedge

Solution

Note that D={(x,y,z) : 3x3, x2y3, 0z3y}.D={(x,y,z)\ :\ -\sqrt{3} \leq x \leq \sqrt{3},\ x^2 \leq y \leq 3,\ 0 \leq z \leq 3-y}.

The volume, then, is given by V=33x2303y dz dy dx=33x233y dy dx=33923x2+12x4 dx=92xx3+110x533=2435\begin{aligned} V &= \int_{-\sqrt{3}}^{\sqrt{3}} \int_{x^2}^{3} \int_0^{3-y} \ dz\ dy\ dx\ &= \int_{-\sqrt{3}}^{\sqrt{3}} \int_{x^2}^{3} 3-y\ dy\ dx\ &= \int_{-\sqrt{3}}^{\sqrt{3}} \dfrac{9}{2}-3x^2+\dfrac{1}{2}x^4\ dx\ &= \dfrac{9}{2}x-x^3+\dfrac{1}{10}x^5 \bigg|_{-\sqrt{3}}^{\sqrt{3}} = \ans{\dfrac{24\sqrt{3}}{5}} \end{aligned}

  1. Evaluate the integral Dxy+xz+yz dV\displaystyle\iiint_D xy+xz+yz\ dV, where D={(x,y,z) : 1x1,2y2,1z3}D = {(x,y,z)\ :\ -1 \leq x \leq 1, -2 \leq y \leq 2, -1 \leq z \leq 3}.

  2. 00

  3. Find the volume of the wedge above the xyxy plane formed when the cylinder x2+y2=4x^2+y^2=4 is cut by the planes z=0z=0 and z=yz=−y.

    alt text

  4. 224x200y dz dy dx=163\displaystyle\int_{-2}^2 \displaystyle\int_{-\sqrt{4-x^2}}^0 \displaystyle\int_0^{-y} \ dz\ dy\ dx = \dfrac{16}{3}

  5. Find the volume of the solid bounded by the surfaces z=eyz=e^y and z=1z=1 over the rectangle {(x,y) : 0x1,0yln2}.{(x,y)\ :\ 0 \leq x \leq 1, 0 \leq y \leq \ln 2}.

    alt text

  6. 010ln21ey dz dy dx=1ln2\displaystyle\int_0^1 \displaystyle\int_0^{\ln 2} \displaystyle\int_1^{e^y} \ dz\ dy\ dx = 1-\ln 2

  7. Find the volume of the wedge of the cylinder x2+4y2=4x^2+4y^2=4 created by the planes z=3xz=3−x and z=x3z=x−3.

    alt text

  8. 1144y244y2x33x dz dx dy=12π\displaystyle\int_{-1}^1 \displaystyle\int_{-\sqrt{4-4y^2}}^{\sqrt{4-4y^2}} \displaystyle\int_{x-3}^{3-x} \ dz\ dx\ dy = 12\pi

  9. Rewrite the integral 051004x+4 dy dx dz\displaystyle\int_0^5 \displaystyle\int_{-1}^0 \displaystyle\int_0^{4x+4}\ dy\ dx\ dz in the order of dz dx dydz\ dx\ dy.

  10. 04y/41005 dz dx dy=10\displaystyle\int_0^4 \displaystyle\int_{y/4-1}^0 \displaystyle\int_0^5 \ dz\ dx\ dy = 10

  11. Evaluate the integral 0101x201x2 dz dy dx.\displaystyle\int_0^1 \displaystyle\int_0^{\sqrt{1-x^2}} \displaystyle\int_0^{\sqrt{1-x^2}}\ dz\ dy\ dx.

  12. 23\dfrac{2}{3}

  13. Evaluate the integral 16042y/30122y3z1y dx dz dy.\displaystyle\int_1^6 \displaystyle\int_0^{4-2y/3} \displaystyle\int_0^{12-2y-3z} \dfrac{1}{y}\ dx\ dz\ dy.

  14. 45+24ln6-45+24\ln 6