Triple Integrals
Introduction
Triple integrals are more difficult (in fact, usually impossible) to picture than double integrals, but the principle is much the same. Instead of integrals like
∬ R f ( x , y ) d A , \iint_R f(x,y) \ dA, ∬ R f ( x , y ) d A ,
now we'll handle integrals like
∭ D f ( x , y , z ) d V \iiint_D f(x,y,z)\ dV ∭ D f ( x , y , z ) d V
where D D D is a 3 3 3 -dimensional body.
Note
The volume of D D D is given by the triple integral
Volume = ∭ D d z d y d x \textrm{Volume } = \iiint_D\ dz\ dy\ dx Volume = ∭ D d z d y d x
Again, the challenge with triple integrals really lies with finding the limits of integration; once we have those, we simply have to carry out the integration, which usually isn't too complicated.
Evaluate the following triple integral.
∫ 0 2 ∫ 0 3 ∫ 0 2 d x d y d x \int_0^2 \int_0^3 \int_0^2\ dx\ dy\ dx ∫ 0 2 ∫ 0 3 ∫ 0 2 d x d y d x
Solution
∫ 0 2 ∫ 0 3 ∫ 0 2 d x d y d x = ∫ 0 2 ∫ 0 3 2 d y d x = ∫ 0 2 6 d x = 12 \begin{aligned}
\int_0^2 \int_0^3 \int_0^2\ dx\ dy\ dx &= \int_0^2 \int_0^3 2\ dy\ dx\
&= \int_0^2 6\ dx = \ans{12}
\end{aligned} ∫ 0 2 ∫ 0 3 ∫ 0 2 d x d y d x = ∫ 0 2 ∫ 0 3 2 d y d x = ∫ 0 2 6 d x = 1 2
Note that this gives the volume of a 2 × 3 × 2 2×3×2 2 × 3 × 2 cube.
Use a triple integral to find the volume of the prism D D D in the first octant bounded by the planes y = 4 − 2 x y=4−2x y = 4 − 2 x and z = 6 z=6 z = 6 .
Solution
Note that this prism is
D = { ( x , y , z ) : 0 ≤ x ≤ 2 , 0 ≤ y ≤ 4 − 2 x , 0 ≤ z ≤ 6 } D={(x,y,z)\ :\ 0 \leq x \leq 2,\ 0 \leq y \leq 4-2x,\ 0 \leq z \leq 6} D = { ( x , y , z ) : 0 ≤ x ≤ 2 , 0 ≤ y ≤ 4 − 2 x , 0 ≤ z ≤ 6 }
or
D = { ( x , y , z ) : 0 ≤ x ≤ 2 − 1 2 y , 0 ≤ y ≤ 4 , 0 ≤ z ≤ 6 } D={(x,y,z)\ :\ 0 \leq x \leq 2-\dfrac{1}{2}y,\ 0 \leq y \leq 4,\ 0 \leq z \leq 6} D = { ( x , y , z ) : 0 ≤ x ≤ 2 − 2 1 y , 0 ≤ y ≤ 4 , 0 ≤ z ≤ 6 }
We can write this integral in several ways, all of which give the same answer:
V = ∫ 0 6 ∫ 0 2 ∫ 0 4 − 2 x d y d x d z = ∫ 0 2 ∫ 0 4 − 2 x ∫ 0 6 d x d y d x = ∫ 0 6 ∫ 0 4 ∫ 0 2 − y / 2 d x d y d z = 24 \begin{aligned}
V &= \int_0^6 \int_0^2 \int_0^{4-2x} \ dy\ dx\ dz\
&= \int_0^2 \int_0^{4-2x} \int_0^6 \ dx\ dy\ dx\
&= \int_0^6 \int_0^4 \int_0^{2-y/2} \ dx\ dy\ dz\
&= \ans{24}
\end{aligned} V = ∫ 0 6 ∫ 0 2 ∫ 0 4 − 2 x d y d x d z = ∫ 0 2 ∫ 0 4 − 2 x ∫ 0 6 d x d y d x = ∫ 0 6 ∫ 0 4 ∫ 0 2 − y / 2 d x d y d z = 2 4
Notice that in each case, we have to make sure that we use the limits that involve one variable before we integrate with respect to that variable.
Find the volume of the solid in the first octant bounded by the plane 2 x + 3 y + 6 z = 12 2x+3y+6z=12 2 x + 3 y + 6 z = 1 2 and the coordinate planes.
∫ 0 4 ∫ 0 6 − 3 y / 2 ∫ 0 12 − 2 x − 3 y d z d x d y = ∫ 0 6 ∫ 0 4 − 2 x / 3 ∫ 0 12 − 2 x − 3 y d z d y d x = 8 \displaystyle\int_0^4 \displaystyle\int_0^{6-3y/2} \displaystyle\int_0^{12-2x-3y} \ dz\ dx\ dy = \displaystyle\int_0^6 \displaystyle\int_0^{4-2x/3} \displaystyle\int_0^{12-2x-3y} \ dz\ dy\ dx = 8 ∫ 0 4 ∫ 0 6 − 3 y / 2 ∫ 0 1 2 − 2 x − 3 y d z d x d y = ∫ 0 6 ∫ 0 4 − 2 x / 3 ∫ 0 1 2 − 2 x − 3 y d z d y d x = 8
Simple Applications
Mass
If the density of a body is a function of position (ρ = f ( x , y , z ) ρ=f(x,y,z) ρ = f ( x , y , z ) ), then the mass of the body is the integral
M = ∭ D f ( x , y , z ) d V M = \iiint_D f(x,y,z)\ dV M = ∭ D f ( x , y , z ) d V
If the density function is given by ρ = 2 − z ρ=2−z ρ = 2 − z kg/m3 ^3 3 for the cube
D = { ( x , y , z ) : 0 ≤ x ≤ 3 , 0 ≤ y ≤ 2 , 0 ≤ z ≤ 1 } , D={(x,y,z)\ :\ 0 \leq x \leq 3,\ 0 \leq y \leq 2,\ 0 \leq z \leq 1}, D = { ( x , y , z ) : 0 ≤ x ≤ 3 , 0 ≤ y ≤ 2 , 0 ≤ z ≤ 1 } ,
find the mass of this cube.
Solution
M = ∫ 0 1 ∫ 0 2 ∫ 0 3 2 − z d x d y d z = ∫ 0 1 ∫ 0 2 6 − 3 z d y d z = ∫ 0 1 12 − 6 z d z = 12 z − 3 z 2 ∣ 0 1 = 9 k g \begin{aligned}
M &= \int_0^1 \int_0^2 \int_0^3 2-z\ dx\ dy\ dz\
&= \int_0^1 \int_0^2 6-3z\ dy\ dz\
&= \int_0^1 12-6z\ dz\
&= 12z-3z^2 \bigg|_0^1 = \ans{9\ kg}
\end{aligned} M = ∫ 0 1 ∫ 0 2 ∫ 0 3 2 − z d x d y d z = ∫ 0 1 ∫ 0 2 6 − 3 z d y d z = ∫ 0 1 1 2 − 6 z d z = 1 2 z − 3 z 2 ∣ ∣ ∣ ∣ 0 1 = 9 k g
Average Value
The average value of f ( x , y , z ) f(x,y,z) f ( x , y , z ) is
f ‾ = 1 volume of D ∭ D f ( x , y , z ) d V \overline{f} = \dfrac{1}{\textrm{volume of } D} \iiint_D f(x,y,z)\ dV f = volume of D 1 ∭ D f ( x , y , z ) d V
Find the average value of f ( x , y , z ) = 250 x y sin ( π z ) f(x,y,z)=250xy \sin(πz) f ( x , y , z ) = 2 5 0 x y sin ( π z ) over the cube
D = { ( x , y , z ) : 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2 , 0 ≤ z ≤ 1 } . D={(x,y,z)\ :\ 0 \leq x \leq 2,\ 0 \leq y \leq 2,\ 0 \leq z \leq 1}. D = { ( x , y , z ) : 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2 , 0 ≤ z ≤ 1 } .
Solution
f ‾ = 1 4 ∫ 0 1 ∫ 0 2 ∫ 0 2 250 x y sin ( π z ) d x d y d z = 1 4 ∫ 0 1 ∫ 0 2 500 y sin ( π z ) d y d z = 1 4 ∫ 0 1 1000 sin ( π z ) d z = 1 4 [ − 1000 ⋅ 1 π cos ( π z ) ] 0 1 = 500 π \begin{aligned}
\overline{f} &= \dfrac{1}{4} \int_0^1 \int_0^2 \int_0^2 250 xy \sin (\pi z) \ dx\ dy\ dz\
&= \dfrac{1}{4} \int_0^1 \int_0^2 500 y \sin (\pi z) \ dy\ dz\
&= \dfrac{1}{4} \int_0^1 1000 \sin (\pi z)\ dz\
&= \dfrac{1}{4} \bigg[ -1000 \cdot \dfrac{1}{\pi} \cos (\pi z) \bigg]_0^1\
&= \ans{\dfrac{500}{\pi}}
\end{aligned} f = 4 1 ∫ 0 1 ∫ 0 2 ∫ 0 2 2 5 0 x y sin ( π z ) d x d y d z = 4 1 ∫ 0 1 ∫ 0 2 5 0 0 y sin ( π z ) d y d z = 4 1 ∫ 0 1 1 0 0 0 sin ( π z ) d z = 4 1 [ − 1 0 0 0 ⋅ π 1 cos ( π z ) ] 0 1 = π 5 0 0
Find the average value of f ( x , y , z ) = 128 e − x − y − z f(x,y,z) = 128e^{-x-y-z} f ( x , y , z ) = 1 2 8 e − x − y − z in the cube D = { ( x , y , z ) : 0 ≤ x ≤ ln 2 , 0 ≤ y ≤ ln 4 , 0 ≤ z ≤ ln 8 } D = {(x,y,z)\ :\ 0 \leq x \leq \ln 2, 0 \leq y \leq \ln 4, 0 \leq z \leq \ln 8} D = { ( x , y , z ) : 0 ≤ x ≤ ln 2 , 0 ≤ y ≤ ln 4 , 0 ≤ z ≤ ln 8 }
1 ( ln 2 ) ( ln 4 ) ( ln 8 ) ∫ 0 ln 8 ∫ 0 ln 4 ∫ 0 ln 2 128 e − x − y − z d x d y d z = 7 ( ln 2 ) 3 \dfrac{1}{(\ln 2)(\ln 4)(\ln 8)}\displaystyle\int_0^{\ln 8} \displaystyle\int_0^{\ln 4} \displaystyle\int_0^{\ln 2} 128e^{-x-y-z}\ dx\ dy\ dz = \dfrac{7}{(\ln 2)^3} ( ln 2 ) ( ln 4 ) ( ln 8 ) 1 ∫ 0 ln 8 ∫ 0 ln 4 ∫ 0 ln 2 1 2 8 e − x − y − z d x d y d z = ( ln 2 ) 3 7
Examples
Evaluate ∭ D 2 x d V \displaystyle\iiint_D 2x\ dV ∭ D 2 x d V , where
D = { ( x , y , z ) : 0 ≤ y ≤ 2 , 0 ≤ x ≤ 4 − y 2 , 0 ≤ z ≤ y } . D={(x,y,z)\ :\ 0 \leq y \leq 2,\ 0 \leq x \leq \sqrt{4-y^2},\ 0 \leq z \leq y}. D = { ( x , y , z ) : 0 ≤ y ≤ 2 , 0 ≤ x ≤ 4 − y 2 , 0 ≤ z ≤ y } .
Solution
∫ 0 2 ∫ 0 4 − y 2 ∫ 0 y 2 x d z d x d y = ∫ 0 2 ∫ 0 4 − y 2 2 x y d x d y = ∫ 0 2 ( 4 − y 2 ) y d y = 2 y − 1 4 y 4 ∣ 0 2 = 4 \begin{aligned}
\int_0^2 \int_0^{\sqrt{4-y^2}} \int_0^y &2x\ dz\ dx\ dy\
&= \int_0^2 \int_0^{\sqrt{4-y^2}} 2xy \ dx\ dy\
&= \int_0^2 (4-y^2)y\ dy\
&= 2y-\dfrac{1}{4}y^4 \bigg|_0^2 = \ans{4}
\end{aligned} ∫ 0 2 ∫ 0 4 − y 2 ∫ 0 y 2 x d z d x d y = ∫ 0 2 ∫ 0 4 − y 2 2 x y d x d y = ∫ 0 2 ( 4 − y 2 ) y d y = 2 y − 4 1 y 4 ∣ ∣ ∣ ∣ 0 2 = 4
Find the volume of the solid in the first octant formed when the cylinder z = sin y z=\sin y z = sin y for 0 ≤ y ≤ π 0≤y≤π 0 ≤ y ≤ π is sliced by the planes y = x y=x y = x and x = 0 x=0 x = 0 .
Solution
Note that D = { ( x , y , z ) : 0 ≤ x ≤ y , 0 ≤ y ≤ π , 0 ≤ z ≤ sin y } . D={(x,y,z)\ :\ 0 \leq x \leq y,\ 0 \leq y \leq \pi,\ 0 \leq z \leq \sin y}. D = { ( x , y , z ) : 0 ≤ x ≤ y , 0 ≤ y ≤ π , 0 ≤ z ≤ sin y } .
The volume, then, is given by
V = ∫ 0 π ∫ 0 y ∫ 0 sin y d z d x d y = ∫ 0 π ∫ 0 y sin y d x d y = ∫ 0 π y sin y d y = − y cos y + sin y ∣ 0 π (using Integration by Parts) = π \begin{aligned}
V &= \int_0^\pi \int_0^y \int_0^{\sin y} \ dz\ dx\ dy\
&= \int_0^\pi \int_0^y \sin y\ dx\ dy\
&= \int_0^\pi y \sin y\ dy\
&= -y\cos y + \sin y \bigg|_0^\pi \ \ \ \textrm{ (using Integration by Parts)}\
&= \ans{\pi}
\end{aligned} V = ∫ 0 π ∫ 0 y ∫ 0 sin y d z d x d y = ∫ 0 π ∫ 0 y sin y d x d y = ∫ 0 π y sin y d y = − y cos y + sin y ∣ ∣ ∣ ∣ 0 π (using Integration by Parts) = π
Find the volume of the prism in the first octant bounded by z = 2 − 4 x z=2−4x z = 2 − 4 x and y = 8 y=8 y = 8 .
Solution
Note that
D = { ( x , y , z ) : 0 ≤ x ≤ 1 / 2 , 0 ≤ y ≤ 8 , 0 ≤ z ≤ 2 − 4 x } . D={(x,y,z)\ :\ 0 \leq x \leq 1/2,\ 0 \leq y \leq 8,\ 0 \leq z \leq 2-4x}. D = { ( x , y , z ) : 0 ≤ x ≤ 1 / 2 , 0 ≤ y ≤ 8 , 0 ≤ z ≤ 2 − 4 x } .
The volume, then, is given by
V = ∫ 0 8 ∫ 0 1 / 2 ∫ 0 2 − 4 x d z d x d y = ∫ 0 8 ∫ 0 1 / 2 2 − 4 x d x d y = ∫ 0 8 [ 2 x − 2 x 2 ] 0 1 / 2 d y = ∫ 0 8 1 2 d y = 4 \begin{aligned}
V &= \int_0^8 \int_0^{1/2} \int_0^{2-4x} \ dz\ dx\ dy\
&= \int_0^8 \int_0^{1/2} 2-4x\ dx\ dy\
&= \int_0^8 \bigg[ 2x-2x^2 \bigg]_0^{1/2}\ dy\
&= \int_0^8 \dfrac{1}{2}\ dy = \ans{4}
\end{aligned} V = ∫ 0 8 ∫ 0 1 / 2 ∫ 0 2 − 4 x d z d x d y = ∫ 0 8 ∫ 0 1 / 2 2 − 4 x d x d y = ∫ 0 8 [ 2 x − 2 x 2 ] 0 1 / 2 d y = ∫ 0 8 2 1 d y = 4
Find the volume of the wedge bounded by the parabolic cylinder y = x 2 y=x^2 y = x 2 and the planes z = 3 − y z=3−y z = 3 − y and z = 0 z=0 z = 0 .
Solution
Note that
D = { ( x , y , z ) : − 3 ≤ x ≤ 3 , x 2 ≤ y ≤ 3 , 0 ≤ z ≤ 3 − y } . D={(x,y,z)\ :\ -\sqrt{3} \leq x \leq \sqrt{3},\ x^2 \leq y \leq 3,\ 0 \leq z \leq 3-y}. D = { ( x , y , z ) : − 3 ≤ x ≤ 3 , x 2 ≤ y ≤ 3 , 0 ≤ z ≤ 3 − y } .
The volume, then, is given by
V = ∫ − 3 3 ∫ x 2 3 ∫ 0 3 − y d z d y d x = ∫ − 3 3 ∫ x 2 3 3 − y d y d x = ∫ − 3 3 9 2 − 3 x 2 + 1 2 x 4 d x = 9 2 x − x 3 + 1 10 x 5 ∣ − 3 3 = 24 3 5 \begin{aligned}
V &= \int_{-\sqrt{3}}^{\sqrt{3}} \int_{x^2}^{3} \int_0^{3-y} \ dz\ dy\ dx\
&= \int_{-\sqrt{3}}^{\sqrt{3}} \int_{x^2}^{3} 3-y\ dy\ dx\
&= \int_{-\sqrt{3}}^{\sqrt{3}} \dfrac{9}{2}-3x^2+\dfrac{1}{2}x^4\ dx\
&= \dfrac{9}{2}x-x^3+\dfrac{1}{10}x^5 \bigg|_{-\sqrt{3}}^{\sqrt{3}} = \ans{\dfrac{24\sqrt{3}}{5}}
\end{aligned} V = ∫ − 3 3 ∫ x 2 3 ∫ 0 3 − y d z d y d x = ∫ − 3 3 ∫ x 2 3 3 − y d y d x = ∫ − 3 3 2 9 − 3 x 2 + 2 1 x 4 d x = 2 9 x − x 3 + 1 0 1 x 5 ∣ ∣ ∣ ∣ − 3 3 = 5 2 4 3
Evaluate the integral ∭ D x y + x z + y z d V \displaystyle\iiint_D xy+xz+yz\ dV ∭ D x y + x z + y z d V , where D = { ( x , y , z ) : − 1 ≤ x ≤ 1 , − 2 ≤ y ≤ 2 , − 1 ≤ z ≤ 3 } D = {(x,y,z)\ :\ -1 \leq x \leq 1, -2 \leq y \leq 2, -1 \leq z \leq 3} D = { ( x , y , z ) : − 1 ≤ x ≤ 1 , − 2 ≤ y ≤ 2 , − 1 ≤ z ≤ 3 } .
0 0 0
Find the volume of the wedge above the x y xy x y plane formed when the cylinder x 2 + y 2 = 4 x^2+y^2=4 x 2 + y 2 = 4 is cut by the planes z = 0 z=0 z = 0 and z = − y z=−y z = − y .
∫ − 2 2 ∫ − 4 − x 2 0 ∫ 0 − y d z d y d x = 16 3 \displaystyle\int_{-2}^2 \displaystyle\int_{-\sqrt{4-x^2}}^0 \displaystyle\int_0^{-y} \ dz\ dy\ dx = \dfrac{16}{3} ∫ − 2 2 ∫ − 4 − x 2 0 ∫ 0 − y d z d y d x = 3 1 6
Find the volume of the solid bounded by the surfaces z = e y z=e^y z = e y and z = 1 z=1 z = 1 over the rectangle { ( x , y ) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ ln 2 } . {(x,y)\ :\ 0 \leq x \leq 1, 0 \leq y \leq \ln 2}. { ( x , y ) : 0 ≤ x ≤ 1 , 0 ≤ y ≤ ln 2 } .
∫ 0 1 ∫ 0 ln 2 ∫ 1 e y d z d y d x = 1 − ln 2 \displaystyle\int_0^1 \displaystyle\int_0^{\ln 2} \displaystyle\int_1^{e^y} \ dz\ dy\ dx = 1-\ln 2 ∫ 0 1 ∫ 0 ln 2 ∫ 1 e y d z d y d x = 1 − ln 2
Find the volume of the wedge of the cylinder x 2 + 4 y 2 = 4 x^2+4y^2=4 x 2 + 4 y 2 = 4 created by the planes z = 3 − x z=3−x z = 3 − x and z = x − 3 z=x−3 z = x − 3 .
∫ − 1 1 ∫ − 4 − 4 y 2 4 − 4 y 2 ∫ x − 3 3 − x d z d x d y = 12 π \displaystyle\int_{-1}^1 \displaystyle\int_{-\sqrt{4-4y^2}}^{\sqrt{4-4y^2}} \displaystyle\int_{x-3}^{3-x} \ dz\ dx\ dy = 12\pi ∫ − 1 1 ∫ − 4 − 4 y 2 4 − 4 y 2 ∫ x − 3 3 − x d z d x d y = 1 2 π
Rewrite the integral ∫ 0 5 ∫ − 1 0 ∫ 0 4 x + 4 d y d x d z \displaystyle\int_0^5 \displaystyle\int_{-1}^0 \displaystyle\int_0^{4x+4}\ dy\ dx\ dz ∫ 0 5 ∫ − 1 0 ∫ 0 4 x + 4 d y d x d z in the order of d z d x d y dz\ dx\ dy d z d x d y .
∫ 0 4 ∫ y / 4 − 1 0 ∫ 0 5 d z d x d y = 10 \displaystyle\int_0^4 \displaystyle\int_{y/4-1}^0 \displaystyle\int_0^5 \ dz\ dx\ dy = 10 ∫ 0 4 ∫ y / 4 − 1 0 ∫ 0 5 d z d x d y = 1 0
Evaluate the integral ∫ 0 1 ∫ 0 1 − x 2 ∫ 0 1 − x 2 d z d y d x . \displaystyle\int_0^1 \displaystyle\int_0^{\sqrt{1-x^2}} \displaystyle\int_0^{\sqrt{1-x^2}}\ dz\ dy\ dx. ∫ 0 1 ∫ 0 1 − x 2 ∫ 0 1 − x 2 d z d y d x .
2 3 \dfrac{2}{3} 3 2
Evaluate the integral ∫ 1 6 ∫ 0 4 − 2 y / 3 ∫ 0 12 − 2 y − 3 z 1 y d x d z d y . \displaystyle\int_1^6 \displaystyle\int_0^{4-2y/3} \displaystyle\int_0^{12-2y-3z} \dfrac{1}{y}\ dx\ dz\ dy. ∫ 1 6 ∫ 0 4 − 2 y / 3 ∫ 0 1 2 − 2 y − 3 z y 1 d x d z d y .
− 45 + 24 ln 6 -45+24\ln 6 − 4 5 + 2 4 ln 6