Motion in Space and Curvature

Velocity and Acceleration

If the position of an object in space is described by a vector-valued function r(t)=x(t),y(t),z(t)r⃗ (t)=⟨x(t),y(t),z(t)⟩, the velocity of the object is the first derivative of the position function, and its acceleration is the second derivative:

Velocity: v(t)=r (t)Speed: v(t)=x(t)2+y(t)2+z(t)2Acceleration: a(t)=v (t)=r (t)\begin{aligned} \textrm{Velocity: } &\vec{v}(t) = \vec{r}\ '(t)\ \textrm{Speed: } &|\vec{v}(t)| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}\ \textrm{Acceleration: } &\vec{a}(t) = \vec{v}\ '(t) = \vec{r}\ ''(t) \end{aligned}

Note that the velocity is a vector, and the speed is a scalar (the magnitude of the velocity vector).

Velocity vectors are tangent to the curve

If r(t)=t i^+t3 j^+t2 k^\vec{r}(t)=t\ \hat{i} + t^3\ \hat{j} + t^2\ \hat{k}, find v(t)\vec{v}(t) and a(t)\vec{a}(t).

Solution

Find the first and second derivatives of r(t)r⃗ (t): v(t)=i^+3t2 j^+2t k^a(t)=6t j^+2 k^\ans{\begin{aligned} \vec{v}(t) &= \hat{i} + 3t^2\ \hat{j} + 2t\ \hat{k}\ \vec{a}(t) &= 6t\ \hat{j} + 2\ \hat{k} \end{aligned}}

If r(t)=3cost i^+3sint j^\vec{r}(t)=3\cos t\ \hat{i} + 3\sin t\ \hat{j}, find the velocity v(t)v⃗ (t), the speed v(t)|v⃗ (t)|, and the acceleration a(t)a⃗ (t).

Solution

Note that x(t)2+y(t)2=9x(t)^2 + y(t)^2 = 9, so this describes a circle in the xyxy plane centered at the origin with radius 33.

v(t)=3sint i^+3cost j^v(t)=3a(t)=3cost i^3sint j^\ans{\begin{aligned} \vec{v}(t) &= -3\sin t\ \hat{i} + 3\cos t\ \hat{j} \longrightarrow |\vec{v}(t)| = 3\ \vec{a}(t) &= -3\cos t\ \hat{i} - 3\sin t\ \hat{j} \end{aligned}}

Curvature

Suppose an object is traveling along a curving path through space (think of a car driving along a mountain path). We can use the unit tangent and normal vectors at each point to describe this motion.

Unit tangent and unit normal vectors

Note that TNTN=0\vec{T} \perp \vec{N} \longrightarrow \vec{T} \cdot \vec{N} = 0.

  1. Unit Tangent Vector: we've already seen this T(t)=r (t)r (t)\ans{\vec{T}(t) = \dfrac{\vec{r}\ '(t)}{|\vec{r}\ '(t)|}}

  2. Curvature: how quickly the direction (tangent vector) changes κ=T (t)r (t)=v×av3\ans{\kappa = \dfrac{|\vec{T}\ '(t)|}{|\vec{r}\ '(t)|} = \dfrac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3}} (note that the curvature is a scalar)

  3. Unit Normal Vector: as long as κ = 0\kappa\ \cancel=\ 0 N(t)=T (t)T (t)\ans{\vec{N}(t) = \dfrac{\vec{T}\ '(t)}{|\vec{T}\ '(t)|}}

Curvature of a Circle

If r(t)=Rcost,Rsint\vec{r}(t)=\langle R\cos t, R\sin t \rangle (a circle of radius RR centered at the origin), find an expression for the unit tangent vector and the curvature.

Solution

T(t)=r (t)r (t)=1RRsint,Rcost=sint,costκ=T (t)r (t)=1R (note: constant curvature)\begin{aligned} \vec{T}(t) &= \dfrac{\vec{r}\ '(t)}{|\vec{r}\ '(t)|} = \dfrac{1}{R} \langle -R\sin t, R\cos t \rangle\ &= \ans{\langle -\sin t,\cos t \rangle}\ \ \kappa &= \dfrac{|\vec{T}\ '(t)|}{|\vec{r}\ '(t)|} = \ans{\dfrac{1}{R}} \textrm{ (note: constant curvature)} \end{aligned}

Helix

A specific helix is defined by r(t)=2cost,2sint,3t\vec{r}(t)=\langle 2\cos t, 2\sin t, 3t \rangle.

Helix

Find the curvature, unit tangent, and unit normal.

Solution

  1. Curvature: κ=v×av3\kappa = \dfrac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3}

v=2sint,2cost,3a=2cost,2sint,0v×a=i^j^k^2sint2cost32cost2sint0=6sint i^6cost j^+4 k^v×a=36sin2t+36cos2t+16=36+16=213v3=4sin2t+4cos2t+9=4+9=13    κ=v×av3=2131313=213\begin{aligned} \vec{v} &= \langle -2\sin t,2\cos t,3 \rangle\ \vec{a} &= \langle -2\cos t,-2\sin t,0 \rangle\ \ \vec{v} \times \vec{a} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\ -2\sin t & 2\cos t & 3\ -2\cos t & -2\sin t & 0 \end{vmatrix}\ \ &= 6\sin t\ \hat{i} - 6\cos t\ \hat{j} + 4\ \hat{k}\ \ |\vec{v} \times \vec{a}| &= \sqrt{36\sin^2 t + 36\cos^2 t + 16} = \sqrt{36+16} = 2\sqrt{13}\ \ |\vec{v}|^3 &= \sqrt{4\sin^2 t + 4\cos^2 t + 9} = \sqrt{4+9} = \sqrt{13}\ \ &\implies \ans{\kappa = \dfrac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3} = \dfrac{2\sqrt{13}}{13\sqrt{13}} = \dfrac{2}{13}} \end{aligned}

  1. Unit Tangent: T(t)=r (t)r (t)\vec{T}(t) = \dfrac{\vec{r}\ '(t)}{|\vec{r}\ '(t)|}

r (t)=2sint,2cost,3r (t)=13    T(t)=21313sint,21313cost,31313\begin{aligned} \vec{r}\ '(t) &= \langle -2\sin t,2\cos t,3 \rangle\ |\vec{r}\ '(t)| &= \sqrt{13}\ \ &\implies \ans{\vec{T}(t) = \left\langle -\dfrac{2\sqrt{13}}{13}\sin t, \dfrac{2\sqrt{13}}{13}\cos t,\dfrac{3\sqrt{13}}{13} \right\rangle} \end{aligned}

  1. Unit Normal: N(t)=T (t)T (t)\vec{N}(t) = \dfrac{\vec{T}\ '(t)}{|\vec{T}\ '(t)|} T(t)=21313sint,21313cost,31313T (t)=21313cost,21313sint,0T (t)=21313    N(t)=cost,sint,0\begin{aligned} \vec{T}(t) &= \left\langle -\dfrac{2\sqrt{13}}{13}\sin t, \dfrac{2\sqrt{13}}{13}\cos t,\dfrac{3\sqrt{13}}{13} \right\rangle\ \vec{T}\ '(t) &= \left\langle -\dfrac{2\sqrt{13}}{13}\cos t, -\dfrac{2\sqrt{13}}{13}\sin t,0 \right\rangle\ |\vec{T}\ '(t)| &= \dfrac{2\sqrt{13}}{13}\ \ &\implies \ans{\vec{N}(t) = \left\langle -\cos t, -\sin t,0 \right\rangle} \end{aligned}

Components of Acceleration

Consider a car driving along a road; the acceleration of the car includes changes in speed (speeding up or slowing down) and changes in direction (turning), so we can talk about the tangential component of acceleration (speed changes) and the normal component of acceleration (direction changes).

alt text

a=aNN+aTTwhere aN=aN=a×vvand aT=aT=avv\begin{aligned} \vec{a} &= a_N \vec{N} + a_T \vec{T}\ \textrm{where } a_N &= \vec{a} \cdot \vec{N} = \dfrac{|\vec{a} \times \vec{v}|}{|\vec{v}|}\ \textrm{and } a_T &= \vec{a} \cdot \vec{T} = \dfrac{\vec{a} \cdot \vec{v}}{|\vec{v}|} \end{aligned}

Car Traveling

If r(t)=t,t2\vec{r}(t)=\langle t,t^2 \rangle for 2t2-2 \leq t \leq 2, find the components of the acceleration vector.

Solution

First, find the acceleration vector: r(t)=t,t2v(t)=1,2ta(t)=0,2\vec{r}(t) = \langle t,t^2 \rangle \longrightarrow \vec{v}(t) = \langle 1,2t \rangle \longrightarrow \vec{a}(t) = \langle 0,2 \rangle

Next, find the unit tangent and unit normal vectors: T(t)=r (t)r (t)=1,2t1+4t2T (t)=4t(1+4t2)3/2,21+4t28t2(1+4t2)3/2=1(1+4t2)3/24t,2N(t)=T (t)T (t)=14t2+12t,1aN=aN=21+4t2aT=aT=4t1+4t2\begin{aligned} \vec{T}(t) &= \dfrac{\vec{r}\ '(t)}{|\vec{r}\ '(t)|} = \dfrac{\langle 1,2t \rangle}{\sqrt{1+4t^2}}\ \ \vec{T}\ '(t) &= \left\langle \dfrac{-4t}{(1+4t^2)^{3/2}}, \dfrac{2}{\sqrt{1+4t^2}}-\dfrac{8t^2}{(1+4t^2)^{3/2}} \right\rangle\ &= \dfrac{1}{(1+4t^2)^{3/2}} \langle -4t,2 \rangle\ \ \vec{N}(t) &= \dfrac{\vec{T}\ '(t)}{|\vec{T}\ '(t)|} = \dfrac{1}{\sqrt{4t^2+1}} \langle -2t,1 \rangle\ \ \end{aligned}\ \ans{\begin{aligned} a_N &= \vec{a} \cdot \vec{N} = \dfrac{2}{\sqrt{1+4t^2}}\ a_T &= \vec{a} \cdot \vec{T} = \dfrac{4t}{\sqrt{1+4t^2}} \end{aligned}}

(note: we could have also calculated aNa_N and aTa_T using the alternate formulas above)

Projectile Motion

In Two Dimensions: no wind

Suppose we launch a projectile and neglect air resistance, so the only force on the projectile is gravity. Suppose the components of the initial velocity vector are v0x=v0cosθv0y=v0sinθ\begin{aligned} v_{0x} &= |\vec{v}0| \cos \theta\ v{0y} &= |\vec{v}_0| \sin \theta \end{aligned}

Parabola of projectile motion

Since a=r \vec{a} = \vec{r}\ '', we can we can integrate to work backwards to the position function rr⃗:

a=g j^v=a dt=gt j^+CC=v0v=gt j^+v0r=v dt=12gt2 j^+v0t+CC=r0r=12gt2 j^+v0t+r0\begin{aligned} \vec{a} &= -g\ \hat{j}\ \ \vec{v} &= \int \vec{a} \ dt = -gt\ \hat{j} + \vec{C}\ &\longrightarrow \vec{C} = \vec{v}_0\ \vec{v} &= -gt\ \hat{j} + \vec{v}_0\ \ \vec{r} &= \int \vec{v}\ dt = -\dfrac{1}{2}gt^2\ \hat{j} + \vec{v}_0 t + \vec{C}\ &\longrightarrow \vec{C} = \vec{r}_0\ \ \vec{r} &= -\dfrac{1}{2}gt^2\ \hat{j} + \vec{v}_0 t + \vec{r}_0 \end{aligned}

Summary

a=0,gv=v0x,gt+v0yr=v0xt+r0x,12gt2+v0yt+r0y\begin{aligned} \vec{a} &= \langle 0,-g \rangle\ \ \vec{v} &= \langle v_{0x},-gt+v_{0y} \rangle\ \ \vec{r} &= \langle v_{0x}t + r_{0x}, -\dfrac{1}{2}gt^2+v_{0y}t+r_{0y} \rangle \end{aligned}

(note: the gravitational constant is g=9.81 m/s2=32.2 ft/s2g=9.81\ m/s^2 = 32.2 \ ft/s^2)

Projectile Motion

A projectile is launched at 8080 ft/s at 3030 degrees from the horizontal.

  1. How long is the projectile in the air?
  2. What is the range?
  3. What is the maximum height?

Solution

v0x=80cos30=403v0y=80sin30=40r0x=r0y=0  (by assumption)a=0,32v=v0x,32t+v0y=403,32t+40r=403t,16t2+40t\begin{aligned} v_{0x} &= 80 \cos 30^{\circ} = 40\sqrt{3}\ v_{0y} &= 80 \sin 30^{\circ} = 40\ \ r_{0x} &= r_{0y} = 0 \ \ \textrm{(by assumption)}\ \ \vec{a} &= \langle 0,-32 \rangle\ \ \vec{v} &= \langle v_{0x},-32t+v_{0y} \rangle\ &= \langle 40\sqrt{3},-32t+40 \rangle\ \ \vec{r} &= \langle 40\sqrt{3}t, -16t^2+40t \rangle \end{aligned}

  1. Time in the air: find tt when the j^\hat{j} component is 00 16t2+40t=0t(4016t)=0t=0,4016    t=52 s\begin{aligned} -16t^2+40t &= 0 \longrightarrow t(40-16t) = 0 \longrightarrow t = 0,\dfrac{40}{16}\ &\implies \ans{t=\dfrac{5}{2}\ s} \end{aligned}

  2. Range: find the i^\hat{i} component when t=52t=\dfrac{5}{2} 403(52)=1003    Range 173.21 ft\begin{aligned} 40\sqrt{3}\left(\dfrac{5}{2}\right) &= 100\sqrt{3}\ &\implies \ans{\textrm{Range } \approx 173.21 \ ft} \end{aligned}

  3. Max Height: find where the j^\hat{j} component of velocity is 00 32t+40=0t=4032=54at t=54, r=16(54)2+40(54)    Max Height =25 ft\begin{aligned} -32t+40 &= 0 \longrightarrow t = \dfrac{40}{32} = \dfrac{5}{4}\ \textrm{at } t &= \dfrac{5}{4}, \ \vec{r} = -16\left(\dfrac{5}{4}\right)^2+40\left(\dfrac{5}{4}\right) &\implies \ans{\textrm{Max Height } = 25 \ ft} \end{aligned}

In Three Dimensions: crosswind

Suppose we launch a projectile due east at 300300 m/s at 4545 degrees above the horizontal, and there is a crosswind from south to north that adds 0.360.36 m/s2^2 to the projectile. Where does this projectile land?

In three dimensions, the acceleration vector is a=0,0.36,9.81\vec{a} = \langle 0,0.36,-9.81 \rangle

Thus, the velocity vector is v=v0x,0.36t+v0y,9.81t+voz=1502,0.36t,9.81t+1502\begin{aligned} \vec{v} &= \langle v_{0x},0.36t+v_{0y},-9.81t+v_{oz} \rangle\ &= \langle 150\sqrt{2}, 0.36t,-9.81t+150\sqrt{2} \rangle \end{aligned}

Finally, the position vector is r=1502t,0.18t2,4.9t2+1502t\vec{r} = \langle 150\sqrt{2}t,0.18t^2,-4.9t^2+150\sqrt{2}t \rangle

The projectile lands when the k^\hat{k} component of rr⃗ is 00: 4.9t2+1502t=0t(15024.9t)=0t=0,43.3r(43.3)=9183.7,337.4\begin{aligned} -4.9t^2+150\sqrt{2}t &= 0 \longrightarrow t(150\sqrt{2}-4.9t) = 0\ t &= 0, 43.3\ \ \vec{r}(43.3) &= \ans{\langle 9183.7,337.4 \rangle} \end{aligned}

The projectile lands 91849184 ft east and 337.4337.4 ft north of where it was launched.