Line Integrals

Introduction

We started in Calculus I with integrals over an interval, then earlier in this course, we studied integrals over regions in the xyxy plane and over volumes. Now we'll see what we call line integrals, which are integrals along a path in three-dimensional space (later, we'll see integrals over surfaces).

Here's the idea: consider a surface in 33-D space, defined by z=f(x,y)z=f(x,y). Suppose there's a path along this surface, as shown below (pretend that there's a surface extending on both sides of the path). The curve CC is the projection of this path onto the xyxy plane.

Line integral

The line integral Cf(x,y) ds\int_C f(x,y) \ ds gives the area of this "curtain" under the curve.

To find dsds, zoom in a segment of CC in the xyxy plane:

Since ds=dx2+dy2ds=\sqrt{dx^2+dy^2}, dsdt=(dxdt)2+(dydt)2ds=(dxdt)2+(dydt)2 dt.\dfrac{ds}{dt} = \sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2} \longrightarrow ds = \sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2}\ dt.

If r(t)=x(t),y(t)\vec{r}(t) = \langle x(t),y(t) \rangle, we can write this as ds=r(t) dtds=|r⃗'(t)|\ dt, so the line integral becomes Cf(x,y) ds=Cf(x(t),y(t)) r (t) dt.\int_C f(x,y)\ ds = \int_C f\big(x(t),y(t)\big) \ |\vec{r}\ '(t)| \ dt.

Examples

Evaluate the line integral C2+x2y ds\int_C 2+x^2y\ ds, where CC is the upper half of the unit circle x2+y2=1x^2+y^2=1.

Solution

Since we evaluate a line integral in terms of tt, we need to parametrize CC. We can do it as follows:

x=costy=1x2=1cos2t=sint\begin{aligned} x &= \cos t\ y &= \sqrt{1-x^2} = \sqrt{1-\cos^2 t} = \sin t \end{aligned}

Since this is the upper half of the circle, 0tπ0≤t≤π.

Upper half of the unit circle

Then r (t)=sint,cost\vec{r}\ '(t) = \langle -\sin t, \cos t \rangle, so r (t)=sin2t+cos2t=1|\vec{r}\ '(t)| = \sqrt{\sin^2 t + \cos^2 t} = 1. Therefore, the line integral becomes

0π2+cos2t sint dt=2t13cos3t0π     by u-substitution=2π+23\begin{aligned} \int_0^\pi &2+\cos^2 t\ \sin t \ dt\ &= 2t-\dfrac{1}{3}\cos^3 t\bigg|_0^\pi \ \ \ \ \textrm{ by u-substitution}\ &= \ans{2\pi + \dfrac{2}{3}} \end{aligned}

Alternate Solution

What if we parameterized the curve differently (recall that parameterization isn't unique)? It would be simpler to parameterize it as follows, but we'll find that the integral is tricker:

x=ty=1t2\begin{aligned} x &= t\ y &= \sqrt{1-t^2} \end{aligned}

In this case, 1t1−1≤t≤1:

Then r (t)=1,t1t2\vec{r}\ '(t) = \langle 1,\dfrac{-t}{\sqrt{1-t^2}} \rangle, so r (t)=1+(t1t2)2=11t2.|\vec{r}\ '(t)| = \sqrt{1+\left(\dfrac{-t}{\sqrt{1-t^2}}\right)^2} = \dfrac{1}{\sqrt{1-t^2}}.

To integrate this, we need to use trigonometric substitution: if we define t=sinθt=\sin θ, then dt=cosθ dθdt=\cos θ\ dθ.

21t2 dt=2cosθcosθ dθ=2θ=2sin1t\begin{aligned} \int \dfrac{2}{\sqrt{1-t^2}}\ dt &= \int \dfrac{2}{\cos \theta} \cdot \cos \theta\ d\theta\ &= 2\theta = 2\sin^{-1} t \end{aligned}

Going back to the line integral:

1121t2+t2 dt=2sin1t+13t311=2π+23\begin{aligned} \int_{-1}^1 &\dfrac{2}{\sqrt{1-t^2}} + t^2 \ dt\ &= 2\sin^{-1} t+\dfrac{1}{3}t^3\bigg|_{-1}^1\ &= \ans{2\pi + \dfrac{2}{3}} \end{aligned}

Notice, of course, that we get the same answer in both cases; one had a simpler parameterization and an easier integral, and vice versa.

  1. Evaluate the integral Cx2+y2 ds\displaystyle\int_C x^2+y^2\ ds, where CC is the circle of radius 44 centered at the origin.

  2. 02π164 dt=128π\displaystyle\int_0^{2\pi} 16 \cdot 4\ dt = 128\pi

  3. Evaluate the integral Cxx2+y2 ds\displaystyle\int_C \dfrac{x}{x^2+y^2}\ ds, where CC is the line segment from (1,1)(1,1) to (10,10)(10,10).

  4. 11012t2 dt=22ln10\displaystyle\int_1^{10} \dfrac{1}{2t} \cdot \sqrt{2}\ dt = \dfrac{\sqrt{2}}{2}\ln 10

A line integral in three dimensions is similar: Cf(x(t),y(t),z(t))r (t) dt,\int_C f\big(x(t),y(t),z(t)\big) |\vec{r}\ '(t)|\ dt, where r(t)=x(t),y(t),z(t).\vec{r}(t) = \langle x(t),y(t),z(t) \rangle.

Evaluate the line integral Cxy+2z ds\displaystyle\int_C xy+2z\ ds, where CC is the line segment from (1,0,0)(1,0,0) to (0,1,1)(0,1,1).

Solution

Start by parameterizing the line segment CC: r(t)=1t,t,t,    0t1r(t) = \langle 1-t,t,t \rangle, \ \ \ \ 0 \leq t \leq 1

Then r(t)=1,1,1r⃗ '(t)=⟨−1,1,1⟩, so r(t)=3|r⃗ '(t)|=\sqrt{3}.

Rewriting the line integral in terms of tt: Cxy+2z ds=01((1t)t+2t)3 dt=3013tt2 dt=3[32t213t3]01=736\begin{aligned} \int_C xy+2z\ ds &= \int_0^1 \big((1-t)t+2t\big)\sqrt{3}\ dt\ &= \sqrt{3} \int_0^1 3t-t^2\ dt\ &= \sqrt{3} \bigg[\dfrac{3}{2}t^2-\dfrac{1}{3}t^3 \bigg]_0^1\ &= \ans{\dfrac{7\sqrt{3}}{6}} \end{aligned}

  1. Evaluate the integral Cxyz ds\displaystyle\int_C xyz\ ds, where CC is the line segment from (0,0,0)(0,0,0) to (1,2,3)(1,2,3).

  2. 3142\dfrac{3\sqrt{14}}{2}

Arc Length

We can use line integrals to calculate arc length, when the function is f(x,y)=1f(x,y)=1 or f(x,y,z)=1f(x,y,z)=1:

The flight of an eagle is given by r(t)=2400cost2,2400sint2,500t\vec{r}(t) = \left\langle 2400 \cos \dfrac{t}{2}, 2400 \sin \dfrac{t}{2}, 500t \right\rangle

in ft. How far does the eagle travel over 0t100≤t≤10?

Solution

r (t)=1200sint2,1200cost2,500r (t)=12002(sin2t2+cos2t2)+5002=1300    L=Cr (t) dt=0101300dt=13,000 ft\begin{aligned} \vec{r}\ '(t) &= \langle -1200 \sin \dfrac{t}{2}, 1200 \cos \dfrac{t}{2}, 500 \rangle\ |\vec{r}\ '(t)| &= \sqrt{1200^2\left(\sin^2 \dfrac{t}{2} + \cos^2 \dfrac{t}{2}\right) + 500^2} = 1300\ \implies L &= \int_C |\vec{r}\ '(t)| \ dt\ &= \int_0^{10} 1300 dt = \ans{13,000\ ft} \end{aligned}

Note that the magnitude of the velocity vector is 13001300, meaning that the eagle traveled at 13001300 ft/min for 1010 minutes, for a total of 13,00013,000 ft.

  1. Find the length of the curve r(t)=20sint4,20cost4,t2\vec{r}(t) = \left\langle 20 \sin \dfrac{t}{4}, 20\cos \dfrac{t}{4}, \dfrac{t}{2} \right\rangle for 0t20≤t≤2.

  2. 101\sqrt{101}

Line Integrals in Vector Fields

A line integral arises when we describe the work done on an object moving along a path CC in a force field.

Tangent component of force

At every point in this force field, the object feels a force, but only the tangential component of the force does any work: FT=Fcosθ,|\vec{F}_T| = |\vec{F}| \cos \theta,

where θθ is the angle between F\vec{F} and FT\vec{F_T}.

FT=FT    : force (where T is the unit tangent vector)ds=r (t) dt   : distance traveled along the curve\begin{aligned} \vec{F}_T = \vec{F} \cdot \vec{T} \ \ \ \ &: \textrm{ force (where } \vec{T} \textrm{ is the unit tangent vector)}\ ds = |\vec{r}\ '(t)| \ dt \ \ \ &: \textrm{ distance traveled along the curve} \end{aligned}

Recall that work is the product of force and distance, so

W=CFT ds=abFr (t)r (t)r (t) dt\begin{aligned} W &= \int_C \vec{F} \cdot \vec{T}\ ds\ &= \int_a^b \vec{F} \cdot \dfrac{\vec{r}\ '(t)}{|\vec{r}\ '(t)|} |\vec{r}\ '(t)|\ dt \end{aligned}

Simplifying: W=abFr (t) dt\ans{W = \int_a^b \vec{F} \cdot \vec{r}\ '(t)\ dt}

Note that work is a scalar.

Electric Force Field

An electric force field is described by F=kx,y,z(x2+y2+z2)3/2,\vec{F} = \dfrac{k \langle x,y,z \rangle}{(x^2+y^2+z^2)^{3/2}}, where kk is a constant. Suppose that k=1k=1 and find the work done by this force field in moving a particle from (1,1,1)(1,1,1) to (3,3,3)(3,3,3).

Solution

Start by parameterizing the line segment CC: r(t)=1+t,1+t,1+t,    0t2r(t) = \langle 1+t,1+t,1+t \rangle, \ \ \ \ 0 \leq t \leq 2

Then r(t)=1,1,1r⃗ '(t)=⟨1,1,1⟩ and the force is written in parametric form as F=1(3(1+t2))3/21+t,1+t,1+t,\vec{F} = \dfrac{1}{\big(3(1+t^2)\big)^{3/2}} \langle 1+t,1+t,1+t \rangle, so Fr (t)=3(1+t)27(1+t)3=13(1+t)2.\vec{F} \cdot \vec{r}\ '(t) = \dfrac{3(1+t)}{\sqrt{27}(1+t)^3} = \dfrac{1}{\sqrt{3}(1+t)^2}.

The work, therefore, is W=abFr (t) dt=0213(1+t)2 dt=13(1+t)02=233=239\begin{aligned} W &= \int_a^b \vec{F} \cdot \vec{r}\ '(t)\ dt\ &= \int_0^2 \dfrac{1}{\sqrt{3}(1+t)^2}\ dt\ &= -\dfrac{1}{\sqrt{3}(1+t)} \bigg|_0^2 = \ans{\dfrac{2}{3\sqrt{3}} = \dfrac{2\sqrt{3}}{9}} \end{aligned}

  1. Find the work done by moving an object from (0,0)(0,0) to (2,8)(2,8) along the parabola y=2x2y=2x^2 if F=y,x\vec{F}=⟨y,x⟩.

  2. W=026t2 dt=16W = \displaystyle\int_0^2 6t^2\ dt = 16