Green's Theorem

Introduction

Recall that C\displaystyle\int_C is a path integral. Now, we define C\displaystyle\oint_C as a path integral along a closed path (meaning that the path returns to where it started).

For instance, using the fundamental theorem: Cϕr (t) dt=ϕ(B)ϕ(A)Cϕr (t) dt=0\begin{aligned} \int_C \nabla \phi \cdot \vec{r}\ '(t)\ dt &= \phi(B) - \phi(A)\ \oint_C \nabla \phi \cdot \vec{r}\ '(t)\ dt &= 0 \end{aligned}

Green's Theorem relates a path integral on a closed curve to a double integral on the region inside the curve. First, though, we need a few simple definitions:

Green's Theorem

There are two forms of Green's Theorem. First, though, let CC be a simple, closed, piecewise-smooth curve, positively oriented, that encloses a connected and simply connected region RR in the plane. Assume that F=f,g\vec{F}=⟨f,g⟩, where ff and gg have continuous first partial derivatives in RR.

  1. Circulation, or Curl, Form CFr (t) dt=Cf dx +g dy=Rgxfy dA\oint_C \vec{F} \cdot \vec{r}\ '(t)\ dt = \oint_C f\ dx \ + g\ dy = \iint_R \dfrac{\partial g}{\partial x} - \dfrac{\partial f}{\partial y} \ dA

  2. Flux, or Divergence, Form CFn^ ds=Cf dy g dx=Rfx+gy dA,\oint_C \vec{F} \cdot \hat{n}\ ds = \oint_C f\ dy \ - g\ dx = \iint_R \dfrac{\partial f}{\partial x} + \dfrac{\partial g}{\partial y} \ dA, where n^\hat{n} is the outward unit normal on the curve.

Note that if you set up the circulation/curl form with F=g,f\vec{F}=\langle -g,f \rangle, you get the flux/divergence form.

Examples

Use Green's Theorem to evaluate Cxy dx +x2y3 dy,\oint_C xy\ dx\ + x^2y^3\ dy, where CC is the triangle with vertices (0,0)(0,0), (1,0)(1,0), and (1,2)(1,2) with positive orientation.

Solution

Since f=xyf=xy and g=x2y3g=x^2y^3, fy=x\dfrac{\partial f}{\partial y} = x and gx=2xy3\dfrac{\partial g}{\partial x} = 2xy^3, so

Cxy dx +x2y3 dy=0102x2xy3x dydx=018x52x2 dx=43x623x301=23\begin{aligned} \oint_C xy\ dx\ + x^2y^3\ dy &= \int_0^1 \int_0^{2x} 2xy^3-x\ dy dx\ &= \int_0^1 8x^5-2x^2\ dx\ &= \dfrac{4}{3}x^6-\dfrac{2}{3}x^3 \bigg|_0^1 = \ans{\dfrac{2}{3}} \end{aligned}

  1. Use Green's Theorem to evaluate Cx3 dy y3 dx\displaystyle\oint_C x^3\ dy\ - y^3\ dx, where CC is the positively oriented circle of radius 22 centered at the origin.

  2. 02π023r2r drdθ=24π\displaystyle\int_0^{2\pi} \displaystyle\int_0^2 3r^2 \cdot r \ dr d\theta = 24\pi

  3. Use Green's Theorem to evaluate C(4x3+sin(y2)) dy (4y3+cos(x2)) dx\displaystyle\oint_C (4x^3+\sin (y^2))\ dy\ - (4y^3+\cos (x^2))\ dx, where CC is the boundary of R={(x,y) : x2+y24}R = {(x,y)\ :\ x^2+y^2 \leq 4}.

  4. 1202π02r2r dr dθ=96π12\displaystyle\int_0^{2\pi} \displaystyle\int_0^2 r^2 \cdot r\ dr\ d\theta = 96\pi

  5. Use Green's Theorem to evaluate C(2x+ey2) dy (4y2+ex2) dx\displaystyle\oint_C \left(2x+e^{y^2}\right)\ dy\ - \left(4y^2+e^{x^2}\right)\ dx, where CC is the boundary of the square with vertices at (0,0)(0,0), (1,0)(1,0), (1,1)(1,1), and (0,1)(0,1).

  6. 66

Consider the rotation vector field F=y,x\vec{F}=⟨−y,x⟩ on the unit disk R={(x,y) : x2+y21}.R = { (x,y) \ :\ x^2+y^2 \leq 1}.

Find the circulation Rgxfy dA\displaystyle\iint_R \dfrac{\partial g}{\partial x} - \dfrac{\partial f}{\partial y} \ dA of this field.

Solution

Since f=yf=−y and g=xg=x, fy=1\dfrac{\partial f}{\partial y} = -1 and \dfrac{\partial g}{\partial x} = 1, so Rgxfy dA=R2 dA.\iint_R \dfrac{\partial g}{\partial x} - \dfrac{\partial f}{\partial y} \ dA = \iint_R 2\ dA.

Because the region is circular, this integral will be easiest using polar coordinates: R2 dA=02π012r dr dθ=2π\iint_R 2\ dA = \int_0^{2\pi} \int_0^1 2r\ dr\ d\theta = \ans{2\pi}

  1. Suppose F=(x2+y2)\vec{F}=∇(\sqrt{x^2+y^2}) and RR is the half annulus R={(r,θ):1r3,0θπ}R={(r,θ) : 1≤r≤3,0≤θ≤π}. Calculate the circulation on RR.

  2. 00

Consider the outward flux CFn^ ds=Rfx+gy dA\oint_C \vec{F} \cdot \hat{n}\ ds = \iint_R \dfrac{\partial f}{\partial x} + \dfrac{\partial g}{\partial y}\ dA of the radial field F=x,y\vec{F}=⟨x,y⟩ across the unit circle C={(x,y):x2+y2=1}C={(x,y) : x^2+y^2=1}.

Solution

Since f=xf=x and g=yg=y, fx=1\dfrac{\partial f}{\partial x} = 1 and gy=1\dfrac{\partial g}{\partial y} = 1, so CFn^ ds=R2 dA.\oint_C \vec{F} \cdot \hat{n}\ ds = \iint_R 2\ dA.

Because the region is circular, this integral will be easiest using polar coordinates: R2 dA=02π012r dr dθ=2π\iint_R 2\ dA = \int_0^{2\pi} \int_0^1 2r\ dr\ d\theta = \ans{2\pi}

  1. Suppose F=(x2+y2)\vec{F}=∇(\sqrt{x^2+y^2}) and RR is the half annulus R={(r,θ):1r3,0θπ}R={(r,θ) : 1≤r≤3,0≤θ≤π}. Calculate the outward flux across the boundary of RR.

  2. 0π13(r2r3+2r)r dr dθ=2π\displaystyle\int_0^{\pi} \displaystyle\int_1^3 \left(-\dfrac{r^2}{r^3}+\dfrac{2}{r}\right) r\ dr\ d\theta = 2\pi

Consider the vector field F=y2,x2\vec{F}=⟨y^2,x^2⟩ on the half annulus R={(x,y) : 1x2+y29,y0}.R = {(x,y)\ : \ 1 \leq x^2+y^2 \leq 9, y \geq 0}.

Find the circulation on CC, the boundary of RR.

Solution

Recall that the circulation is CFr (t) dt=Rgxfy dA\displaystyle\oint_C \vec{F} \cdot \vec{r}\ '(t)\ dt = \displaystyle\iint_R \dfrac{\partial g}{\partial x} - \dfrac{\partial f}{\partial y} \ dA.

Since f=y2f=y^2 and g=x2g=x^2, fx=2y\dfrac{\partial f}{\partial x} = 2y and gy=2x\dfrac{\partial g}{\partial y} = 2x, so CFr (t) dt=R2x2y dA.\oint_C \vec{F} \cdot \vec{r}\ '(t)\ dt = \iint_R 2x-2y\ dA.

Again, this integral will be easiest using polar coordinates: R2x2y dA=0π13(2r cosθ2r sinθ)r dr dθ=1043\iint_R 2x-2y\ dA = \int_0^{\pi} \int_1^3 (2r \ \cos\theta - 2r\ \sin\theta) r \ dr\ d\theta = \ans{-\dfrac{104}{3}}

Sidenote: using Green's Theorem to find area

If F=0,x\vec{F}=⟨0,x⟩, CFr (t) dt=Cx dy=R dA= area of R\oint_C \vec{F} \cdot \vec{r}\ '(t) \ dt = \oint_C x\ dy = \iint_R \ dA = \textrm{ area of } R

On the other hand, if F=y,0\vec{F}=⟨y,0⟩, CFr (t) dt=Cy dx=R dA=area of R\oint_C \vec{F} \cdot \vec{r}\ '(t) \ dt = \oint_C y\ dx = -\iint_R \ dA = -\textrm{area of } R

Therefore, the area of RR is Cx dy=Cy dx,\oint_C x\ dy = -\oint_C y\ dx, so Area of R=12Cx dyy dx.\textrm{Area of } R = \dfrac{1}{2} \oint_C x\ dy - y\ dx.

Find the area of R={(x,y):x2+y216}R={(x,y) : x^2+y^2≤16}.

Solution

The boundary of this region can be expressed parametrically as

x=4costdx=4sint dty=4sintdy=4cost dt\begin{aligned} x &= 4 \cos t \longrightarrow dx = -4 \sin t\ dt\ y &= 4 \sin t \longrightarrow dy = 4 \cos t\ dt \end{aligned}

The area of this region, then, is 12Cx dyy dx=12C(4cost)(4cost)(4sint)(4sint) dt=8Ccos2t+sin2t dt=802π dt=16π\begin{aligned} &\dfrac{1}{2} \oint_C x\ dy - y\ dx\ = &\dfrac{1}{2} \oint_C (4 \cos t)(4 \cos t) - (4 \sin t)(4 \sin t)\ dt\ = &8 \oint_C \cos^2 t + \sin^2 t\ dt\ = &8 \int_0^{2\pi} \ dt = \ans{16\pi} \end{aligned}

  1. Use Green's Theorem to find the area of a disk of radius 55.

  2. 25π25\pi