Double Integrals over General Regions
Introduction
If the region over which we're evaluating a double integral is not rectangular, the order of integration matters, and the trickiest part of the problem tends to be finding the limits of integration.
There are two possibilities for this region R R R :
Integrate with respect to y y y first: ∫ a b ∫ g ( x ) h ( x ) f ( x , y ) d y d x \displaystyle\int_a^b \displaystyle\int_{g(x)}^{h(x)} f(x,y)\ dy\ dx ∫ a b ∫ g ( x ) h ( x ) f ( x , y ) d y d x
Integrate with respect to x x x first: ∫ c d ∫ g ( y ) h ( y ) f ( x , y ) d x d y \displaystyle\int_c^d \displaystyle\int_{g(y)}^{h(y)} f(x,y)\ dx\ dy ∫ c d ∫ g ( y ) h ( y ) f ( x , y ) d x d y
Basically, we want to make sure that the last limits we plug in are constants, not functions.
Examples
Evaluate the following integral.
∫ 0 1 ∫ 1 x 2 3 x − y d y d x \int_0^1 \int_1^{x^2} 3x-y \ dy\ dx ∫ 0 1 ∫ 1 x 2 3 x − y d y d x
Solution
Note the order of integration: the inner integral has a limit in terms of x x x , and the outer integral is evaluated with respect to x x x .
∫ 0 1 ∫ 1 x 2 3 x − y d y d x = ∫ 0 1 [ 3 x y − 1 2 y 2 ] 1 x 2 d x = ∫ 0 1 3 x ( x 2 ) − 1 2 ( x 2 ) 2 d x = ∫ 0 1 3 x 3 − 1 2 x 4 d x = 3 4 x 4 − 1 10 x 5 ∣ 0 1 = 13 20 \begin{aligned}
\int_0^1 \int_1^{x^2} &3x-y \ dy\ dx\
&= \int_0^1 \bigg[ 3xy-\dfrac{1}{2}y^2 \bigg]_1^{x^2}\ dx\
&= \int_0^1 3x(x^2)-\dfrac{1}{2}(x^2)^2\ dx\
&= \int_0^1 3x^3-\dfrac{1}{2}x^4\ dx\
&= \dfrac{3}{4}x^4 - \dfrac{1}{10}x^5 \bigg|_0^1 = \ans{\dfrac{13}{20}}
\end{aligned} ∫ 0 1 ∫ 1 x 2 3 x − y d y d x = ∫ 0 1 [ 3 x y − 2 1 y 2 ] 1 x 2 d x = ∫ 0 1 3 x ( x 2 ) − 2 1 ( x 2 ) 2 d x = ∫ 0 1 3 x 3 − 2 1 x 4 d x = 4 3 x 4 − 1 0 1 x 5 ∣ ∣ ∣ ∣ 0 1 = 2 0 1 3
Evaluate ∬ R x y 2 d A \displaystyle\iint_R xy^2\ dA ∬ R x y 2 d A , where R R R is the triangular region with vertices ( 0 , 0 ) (0,0) ( 0 , 0 ) , ( 2 , 4 ) (2,4) ( 2 , 4 ) , and ( 6 , 0 ) (6,0) ( 6 , 0 ) .
Solution
We could take vertical slices, but we'd have to split the region into two. Instead, we'll take horizontal slices (with Δ y Δy Δ y ), so we'll integrate with respect to x x x first:
∫ A ( y ) d y = ∬ f ( x , y ) d x d y \int A(y)\ dy = \iint f(x,y)\ dx\ dy ∫ A ( y ) d y = ∬ f ( x , y ) d x d y
The limits for y y y are from 0 0 0 to 4 4 4 , and the limits for x x x are from the left-hand function to the right-hand one:
∬ R x y 2 d A = ∫ 0 4 ∫ y / 2 − y + 6 x y 2 d x d y = ∫ 0 4 [ 1 2 x 2 y 2 ] y / 2 − y + 6 d y = ∫ 0 4 3 8 y 2 − 12 y + 36 d y = 1 8 y 3 − 6 y 2 + 36 y ∣ 0 4 = 56 \begin{aligned}
\iint_R xy^2\ dA &= \int_0^4 \int_{y/2}^{-y+6} xy^2\ dx\ dy\
&= \int_0^4 \bigg[\dfrac{1}{2}x^2y^2\bigg]_{y/2}^{-y+6}\ dy\
&= \int_0^4 \dfrac{3}{8}y^2-12y+36\ dy\
&= \dfrac{1}{8}y^3-6y^2+36y \bigg|_0^4 = \ans{56}
\end{aligned} ∬ R x y 2 d A = ∫ 0 4 ∫ y / 2 − y + 6 x y 2 d x d y = ∫ 0 4 [ 2 1 x 2 y 2 ] y / 2 − y + 6 d y = ∫ 0 4 8 3 y 2 − 1 2 y + 3 6 d y = 8 1 y 3 − 6 y 2 + 3 6 y ∣ ∣ ∣ ∣ 0 4 = 5 6
Evaluate ∬ R x y d A \displaystyle\iint_R xy\ dA ∬ R x y d A , where R R R is bounded by y = 2 x + 1 y=2x+1 y = 2 x + 1 , y = − 2 x + 5 y=−2x+5 y = − 2 x + 5 , and x = 0 x=0 x = 0 .
Solution
Here we'll take vertical slices, so we'll integrate with respect to y y y first:
∬ R x y d A = ∫ 0 1 ∫ 2 x + 1 − 2 x + 5 x y d y d x = ∫ 0 1 [ 1 2 x y 2 ] 2 x + 1 − 2 x + 5 d x = ∫ 0 1 − 12 x 2 + 12 x d x = − 4 x 3 + 6 x 2 ∣ 0 1 = 2 \begin{aligned}
\iint_R xy\ dA &= \int_0^1 \int_{2x+1}^{-2x+5} xy\ dy\ dx\
&= \int_0^1 \bigg[\dfrac{1}{2}xy^2\bigg]_{2x+1}^{-2x+5}\ dx\
&= \int_0^1 -12x^2+12x\ dx\
&= -4x^3+6x^2 \bigg|_0^1 = \ans{2}
\end{aligned} ∬ R x y d A = ∫ 0 1 ∫ 2 x + 1 − 2 x + 5 x y d y d x = ∫ 0 1 [ 2 1 x y 2 ] 2 x + 1 − 2 x + 5 d x = ∫ 0 1 − 1 2 x 2 + 1 2 x d x = − 4 x 3 + 6 x 2 ∣ ∣ ∣ ∣ 0 1 = 2
Reverse the order of integration and evaluate ∫ 0 1 ∫ x 2 1 x 3 sin ( y 3 ) d y d x \displaystyle\int_0^1 \displaystyle\int_{x^2}^1 x^3 \sin (y^3)\ dy\ dx ∫ 0 1 ∫ x 2 1 x 3 sin ( y 3 ) d y d x .
Solution
∫ 0 1 ∫ 0 y x 3 sin ( y 3 ) d x d y = ∫ 0 1 1 4 y 2 sin ( y 3 ) d y = − 1 12 cos 1 + 12 \begin{aligned}
\int_0^1 \int_0^{\sqrt{y}} x^3 \sin (y^3)\ dx\ dy &= \int_0^1 \dfrac{1}{4}y^2 \sin (y^3)\ dy\
&= \ans{-\dfrac{1}{12}\cos 1 + 12}
\end{aligned} ∫ 0 1 ∫ 0 y x 3 sin ( y 3 ) d x d y = ∫ 0 1 4 1 y 2 sin ( y 3 ) d y = − 1 2 1 cos 1 + 1 2
Find the volume of the solid under f ( x , y ) = x f(x,y)=x f ( x , y ) = x bounded by y = x 2 y=x^2 y = x 2 , y = − x + 12 y=−x+12 y = − x + 1 2 , and y = 4 x + 12 y=4x+12 y = 4 x + 1 2 .
Solution
Notice that the intersection points are − 2 −2 − 2 and 3 3 3 , but we need to split this into two regions, one from − 2 −2 − 2 to 0 0 0 , and the other from 0 0 0 to 3 3 3 .
Volume = ∫ − 2 0 ∫ x 2 4 x + 12 x d y d x + ∫ 0 3 ∫ x 2 − x + 12 x d y d x = ∫ − 2 0 x ( 4 x + 12 ) − x ( x 2 ) d x + ∫ 0 3 x ( − x + 12 ) − x ( x 2 ) d x = ∫ − 2 0 − x 3 + 4 x 2 + 12 x d x + ∫ 0 3 − x 3 − x 2 + 12 x d x = [ − 1 4 x 4 + 4 3 x 3 + 6 x 2 ] − 2 0 + [ − 1 4 x 4 − 1 3 x 3 + 6 x 2 ] 0 3 = 185 12 \begin{aligned}
\textrm{Volume } &= \int_{-2}^0 \int_{x^2}^{4x+12} x\ dy\ dx + \int_0^3 \int_{x^2}^{-x+12} x\ dy\ dx\
&= \int_{-2}^0 x(4x+12)-x(x^2)\ dx + \int_0^3 x(-x+12)-x(x^2)\ dx\
&= \int_{-2}^0 -x^3+4x^2+12x\ dx + \int_0^3 -x^3-x^2+12x\ dx\
&= \bigg[-\dfrac{1}{4}x^4+\dfrac{4}{3}x^3+6x^2 \bigg]_{-2}^0 + \bigg[-\dfrac{1}{4}x^4-\dfrac{1}{3}x^3+6x^2 \bigg]_0^3\
&= \ans{\dfrac{185}{12}}
\end{aligned} Volume = ∫ − 2 0 ∫ x 2 4 x + 1 2 x d y d x + ∫ 0 3 ∫ x 2 − x + 1 2 x d y d x = ∫ − 2 0 x ( 4 x + 1 2 ) − x ( x 2 ) d x + ∫ 0 3 x ( − x + 1 2 ) − x ( x 2 ) d x = ∫ − 2 0 − x 3 + 4 x 2 + 1 2 x d x + ∫ 0 3 − x 3 − x 2 + 1 2 x d x = [ − 4 1 x 4 + 3 4 x 3 + 6 x 2 ] − 2 0 + [ − 4 1 x 4 − 3 1 x 3 + 6 x 2 ] 0 3 = 1 2 1 8 5
Evaluate the integral ∫ − 1 2 ∫ y 4 − y d x d y \displaystyle\int_{-1}^2 \displaystyle\int_{y}^{4-y}\ dx\ dy ∫ − 1 2 ∫ y 4 − y d x d y .
9 9 9
Evaluate the integral ∫ 0 4 ∫ − 16 − y 2 16 − y 2 2 x y d x d y \displaystyle\int_{0}^4 \displaystyle\int_{-\sqrt{16-y^2}}^{\sqrt{16-y^2}} 2xy\ dx\ dy ∫ 0 4 ∫ − 1 6 − y 2 1 6 − y 2 2 x y d x d y .
0 0 0
Evaluate the integral ∫ 0 ln 2 ∫ e y 2 y x d x d y \displaystyle\int_0^{\ln 2} \displaystyle\int_{e^y}^{2} \dfrac{y}{x}\ dx\ dy ∫ 0 ln 2 ∫ e y 2 x y d x d y .
( ln 2 ) 3 6 \dfrac{(\ln 2)^3}{6} 6 ( ln 2 ) 3
Evaluate the integral ∫ 0 π / 2 ∫ 0 cos y e sin y d x d y \displaystyle\int_0^{\pi/2} \displaystyle\int_{0}^{\cos y} e^{\sin y}\ dx\ dy ∫ 0 π / 2 ∫ 0 cos y e sin y d x d y .
e − 1 e-1 e − 1
Evaluate the integral ∬ R y 2 d A \displaystyle\iint_R y^2\ dA ∬ R y 2 d A , where R R R is bounded by x = 1 x=1 x = 1 , y = 2 x + 2 y=2x+2 y = 2 x + 2 , and y = − x − 1 y=-x-1 y = − x − 1 .
12 12 1 2
Evaluate the integral ∬ R 3 x y d A \displaystyle\iint_R 3xy\ dA ∬ R 3 x y d A , where R R R is bounded by y = 2 − x y=2-x y = 2 − x , y = 0 y=0 y = 0 , and x = 4 − y 2 x=4-y^2 x = 4 − y 2 in the first quadrant.
14 14 1 4
Evaluate the integral ∬ R 3 x 2 d A \displaystyle\iint_R 3x^2\ dA ∬ R 3 x 2 d A , where R R R is bounded by x = 0 x=0 x = 0 , y = 2 x + 4 y=2x+4 y = 2 x + 4 , and y = x 3 y=x^3 y = x 3 .
24 24 2 4
Evaluate the integral ∬ R x y d A \displaystyle\iint_R xy\ dA ∬ R x y d A , where R R R is bounded by x = 0 x=0 x = 0 , y = 2 x + 1 y=2x+1 y = 2 x + 1 , and y = − 2 x + 5 y=-2x+5 y = − 2 x + 5 .
2 2 2
Change the order of integration and evaluate ∫ 0 1 ∫ y 1 e x 2 d x d y . \displaystyle\int_0^1 \displaystyle\int_y^1 e^{x^2}\ dx\ dy. ∫ 0 1 ∫ y 1 e x 2 d x d y .
∫ 0 1 ∫ 0 x e x 2 d y d x = 1 2 ( e − 1 ) \displaystyle\int_0^1 \displaystyle\int_0^x e^{x^2}\ dy\ dx = \dfrac{1}{2}(e-1) ∫ 0 1 ∫ 0 x e x 2 d y d x = 2 1 ( e − 1 )