Double Integrals over General Regions

Introduction

If the region over which we're evaluating a double integral is not rectangular, the order of integration matters, and the trickiest part of the problem tends to be finding the limits of integration.

There are two possibilities for this region RR:

Integrating with respect to y first Integrating with respect to x first
Integrate with respect to yy first: abg(x)h(x)f(x,y) dy dx\displaystyle\int_a^b \displaystyle\int_{g(x)}^{h(x)} f(x,y)\ dy\ dx Integrate with respect to xx first: cdg(y)h(y)f(x,y) dx dy\displaystyle\int_c^d \displaystyle\int_{g(y)}^{h(y)} f(x,y)\ dx\ dy

Basically, we want to make sure that the last limits we plug in are constants, not functions.

Examples

Evaluate the following integral. 011x23xy dy dx\int_0^1 \int_1^{x^2} 3x-y \ dy\ dx

Solution

Note the order of integration: the inner integral has a limit in terms of xx, and the outer integral is evaluated with respect to xx.

011x23xy dy dx=01[3xy12y2]1x2 dx=013x(x2)12(x2)2 dx=013x312x4 dx=34x4110x501=1320\begin{aligned} \int_0^1 \int_1^{x^2} &3x-y \ dy\ dx\ &= \int_0^1 \bigg[ 3xy-\dfrac{1}{2}y^2 \bigg]_1^{x^2}\ dx\ &= \int_0^1 3x(x^2)-\dfrac{1}{2}(x^2)^2\ dx\ &= \int_0^1 3x^3-\dfrac{1}{2}x^4\ dx\ &= \dfrac{3}{4}x^4 - \dfrac{1}{10}x^5 \bigg|_0^1 = \ans{\dfrac{13}{20}} \end{aligned}

Evaluate Rxy2 dA\displaystyle\iint_R xy^2\ dA, where RR is the triangular region with vertices (0,0)(0,0), (2,4)(2,4), and (6,0)(6,0).

Triangle

Solution

We could take vertical slices, but we'd have to split the region into two. Instead, we'll take horizontal slices (with ΔyΔy), so we'll integrate with respect to xx first: A(y) dy=f(x,y) dx dy\int A(y)\ dy = \iint f(x,y)\ dx\ dy

The limits for yy are from 00 to 44, and the limits for xx are from the left-hand function to the right-hand one:

Rxy2 dA=04y/2y+6xy2 dx dy=04[12x2y2]y/2y+6 dy=0438y212y+36 dy=18y36y2+36y04=56\begin{aligned} \iint_R xy^2\ dA &= \int_0^4 \int_{y/2}^{-y+6} xy^2\ dx\ dy\ &= \int_0^4 \bigg[\dfrac{1}{2}x^2y^2\bigg]_{y/2}^{-y+6}\ dy\ &= \int_0^4 \dfrac{3}{8}y^2-12y+36\ dy\ &= \dfrac{1}{8}y^3-6y^2+36y \bigg|_0^4 = \ans{56} \end{aligned}

Evaluate Rxy dA\displaystyle\iint_R xy\ dA, where RR is bounded by y=2x+1y=2x+1, y=2x+5y=−2x+5, and x=0x=0.

Solution

Here we'll take vertical slices, so we'll integrate with respect to yy first:

Rxy dA=012x+12x+5xy dy dx=01[12xy2]2x+12x+5 dx=0112x2+12x dx=4x3+6x201=2\begin{aligned} \iint_R xy\ dA &= \int_0^1 \int_{2x+1}^{-2x+5} xy\ dy\ dx\ &= \int_0^1 \bigg[\dfrac{1}{2}xy^2\bigg]_{2x+1}^{-2x+5}\ dx\ &= \int_0^1 -12x^2+12x\ dx\ &= -4x^3+6x^2 \bigg|_0^1 = \ans{2} \end{aligned}

Reverse the order of integration and evaluate 01x21x3sin(y3) dy dx\displaystyle\int_0^1 \displaystyle\int_{x^2}^1 x^3 \sin (y^3)\ dy\ dx.

Solution

010yx3sin(y3) dx dy=0114y2sin(y3) dy=112cos1+12\begin{aligned} \int_0^1 \int_0^{\sqrt{y}} x^3 \sin (y^3)\ dx\ dy &= \int_0^1 \dfrac{1}{4}y^2 \sin (y^3)\ dy\ &= \ans{-\dfrac{1}{12}\cos 1 + 12} \end{aligned}

Find the volume of the solid under f(x,y)=xf(x,y)=x bounded by y=x2y=x^2, y=x+12y=−x+12, and y=4x+12y=4x+12.

Solution

Notice that the intersection points are 2−2 and 33, but we need to split this into two regions, one from 2−2 to 00, and the other from 00 to 33.

Volume =20x24x+12x dy dx+03x2x+12x dy dx=20x(4x+12)x(x2) dx+03x(x+12)x(x2) dx=20x3+4x2+12x dx+03x3x2+12x dx=[14x4+43x3+6x2]20+[14x413x3+6x2]03=18512\begin{aligned} \textrm{Volume } &= \int_{-2}^0 \int_{x^2}^{4x+12} x\ dy\ dx + \int_0^3 \int_{x^2}^{-x+12} x\ dy\ dx\ &= \int_{-2}^0 x(4x+12)-x(x^2)\ dx + \int_0^3 x(-x+12)-x(x^2)\ dx\ &= \int_{-2}^0 -x^3+4x^2+12x\ dx + \int_0^3 -x^3-x^2+12x\ dx\ &= \bigg[-\dfrac{1}{4}x^4+\dfrac{4}{3}x^3+6x^2 \bigg]_{-2}^0 + \bigg[-\dfrac{1}{4}x^4-\dfrac{1}{3}x^3+6x^2 \bigg]_0^3\ &= \ans{\dfrac{185}{12}} \end{aligned}

  1. Evaluate the integral 12y4y dx dy\displaystyle\int_{-1}^2 \displaystyle\int_{y}^{4-y}\ dx\ dy.

  2. 99

  3. Evaluate the integral 0416y216y22xy dx dy\displaystyle\int_{0}^4 \displaystyle\int_{-\sqrt{16-y^2}}^{\sqrt{16-y^2}} 2xy\ dx\ dy.

  4. 00

  5. Evaluate the integral 0ln2ey2yx dx dy\displaystyle\int_0^{\ln 2} \displaystyle\int_{e^y}^{2} \dfrac{y}{x}\ dx\ dy.

  6. (ln2)36\dfrac{(\ln 2)^3}{6}

  7. Evaluate the integral 0π/20cosyesiny dx dy\displaystyle\int_0^{\pi/2} \displaystyle\int_{0}^{\cos y} e^{\sin y}\ dx\ dy.

  8. e1e-1

  9. Evaluate the integral Ry2 dA\displaystyle\iint_R y^2\ dA, where RR is bounded by x=1x=1, y=2x+2y=2x+2, and y=x1y=-x-1.

  10. 1212

  11. Evaluate the integral R3xy dA\displaystyle\iint_R 3xy\ dA, where RR is bounded by y=2xy=2-x, y=0y=0, and x=4y2x=4-y^2 in the first quadrant.

  12. 1414

  13. Evaluate the integral R3x2 dA\displaystyle\iint_R 3x^2\ dA, where RR is bounded by x=0x=0, y=2x+4y=2x+4, and y=x3y=x^3.

  14. 2424

  15. Evaluate the integral Rxy dA\displaystyle\iint_R xy\ dA, where RR is bounded by x=0x=0, y=2x+1y=2x+1, and y=2x+5y=-2x+5.

  16. 22

  17. Change the order of integration and evaluate 01y1ex2 dx dy.\displaystyle\int_0^1 \displaystyle\int_y^1 e^{x^2}\ dx\ dy.

  18. 010xex2 dy dx=12(e1)\displaystyle\int_0^1 \displaystyle\int_0^x e^{x^2}\ dy\ dx = \dfrac{1}{2}(e-1)