Divergence and Curl

Introduction

Recall that Green's Theorem has two forms, the curl form, involving gxfy\dfrac{\partial g}{\partial x} - \dfrac{\partial f}{\partial y}, and the divergence form, involving fx+gy\dfrac{\partial f}{\partial x} + \dfrac{\partial g}{\partial y}. In general, the divergence and curl can be expressed as either the dot product or cross product of the gradient vector =x,y,z\nabla = \left\langle \dfrac{\partial}{\partial x},\dfrac{\partial}{\partial y},\dfrac{\partial}{\partial z} \right\rangle and the vector field F=f,g,h\vec{F}=⟨f,g,h⟩ (in three dimensions):

Div =FCurl =×F\begin{aligned} \textrm{Div } &= \nabla \cdot \vec{F}\ \textrm{Curl } &= \nabla \times \vec{F} \end{aligned}

Important Note

A vector field F\vec{F} is conservative if and only if ×F=0.\nabla \times \vec{F} = \vec{0}.

Find curl(F)curl(\vec{F}) for the field F=x,y,z\vec{F}=⟨x,y,z⟩ (a radial field).

Solution

×F=ı^ȷ^k^xyzxyz=(00)ı^(00)ȷ^+(00)k^=0,0,0\begin{aligned} \nabla \times \vec{F} &= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k}\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\ x & y & z \end{vmatrix}\ \ &= (0-0)\hat{\imath} - (0-0)\hat{\jmath} + (0-0)\hat{k}\ &= \ans{\langle 0,0,0 \rangle} \end{aligned}

Find curl(F)curl(\vec{F}) for the field F=y,xz,y\vec{F}=⟨−y,x−z,y⟩ (a rotation field).

Solution

×F=ı^ȷ^k^xyzyxzy=(1(1))ı^(00)ȷ^+(1(1))k^=2,0,2\begin{aligned} \nabla \times \vec{F} &= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k}\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\ -y & x-z & y \end{vmatrix}\ \ &= (1-(-1))\hat{\imath} - (0-0)\hat{\jmath} + (1-(-1))\hat{k}\ &= \ans{\langle 2,0,2 \rangle} \end{aligned}

  1. Find curl(F)curl(\vec{F}) for the field F=x2y2,xy,z.\vec{F} = \langle x^2-y^2,xy,z \rangle.

  2. curl(F)=0,0,3ycurl(\vec{F}) = \langle 0,0,3y \rangle

  3. Find curl(F)curl(\vec{F}) for the field F=x2z2,1,2xz.\vec{F} = \langle x^2-z^2,1,2xz \rangle.

  4. curl(F)=0,4z,0curl(\vec{F}) = \langle 0,-4z,0 \rangle

  5. Find curl(F)curl(\vec{F}) for the field F=z2siny,xz2cosy,2xzsiny.\vec{F} = \langle z^2 \sin y,xz^2 \cos y,2xz \sin y \rangle.

  6. curl(F)=0,0,0curl(\vec{F}) = \langle 0,0,0 \rangle

Interpretation of Curl

Suppose that F\vec{F} describes the velocity field of a fluid. Then the curl of F\vec{F} is the tendency of particles at (x,y,z)(x,y,z) to rotate about the axis that points in the direction of the curl vector.

If curl(F)=0curl(\vec{F})=\vec{0} (a conservative vector field), then the fluid is called irrotational, as in the example above of the radial field.

Examples

Determine if F=x2y,xyz,x2y2\vec{F} = \langle x^2y,xyz,-x^2y^2 \rangle is a conservative vector field.

Solution

×F=ı^ȷ^k^xyzx2yxyzx2y2=(2x2yxy)ı^(2xy20)ȷ^+(yzx2)k^0    F is not conservative.\begin{aligned} \nabla \times \vec{F} &= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k}\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\ x^2y & xyz & -x^2y^2 \end{vmatrix}\ \ &= (-2x^2y-xy)\hat{\imath} - (-2xy^2-0)\hat{\jmath} + (yz-x^2)\hat{k}\ &\neq \vec{0} \implies \ans{\vec{F} \textrm{ is not conservative.}} \end{aligned}

  1. Determine if F=2x,2y,2z\vec{F}=⟨2x,−2y,2z⟩ is conservative.

  2. Yes, it is conservative.

Let F=yz,xz,xy\vec{F}=⟨yz,xz,xy⟩.

  1. Find curl(F)curl(\vec{F}).
  2. Find the work done in moving a particle from (1,2,2)(1,2,2) to (3,4,4)(3,4,4) through this force field.

Solution

×F=ı^ȷ^k^xyzyzxzxy=0\begin{aligned} \nabla \times \vec{F} &= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k}\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\ yz & xz & xy \end{vmatrix}\ \ &= \vec{0} \end{aligned}

Since ×F=0∇×\vec{F}=0⃗, this force field is conservative, which means that we can use the fundamental theorem of line integrals to calculate this work: W=CFr (t) dt=ϕ(B)ϕ(A)W = \int_C \vec{F} \cdot \vec{r}\ '(t) \ dt = \phi(B)-\phi(A)

First, though, we need to find ϕ(x,y,z)ϕ(x,y,z):

ϕx=yz    ϕ=xyz+c(y,z)ϕy=xz+cy(y,z)=xz    cy(y,z)=0    c(y,z)=d(z)ϕz=xy+dz(z)=xy    dz(z)=0    ϕ(x,y,z)=xyz    W=ϕ(3,4,4)ϕ(1,2,2)=(3)(4)(4)(1)(2)(2)=44\begin{aligned} \phi_x &= yz \implies \phi = xyz + c(y,z)\ \phi_y &= xz+c_y (y,z) = xz \implies c_y (y,z) = 0\ &\implies c(y,z) = d(z)\ \ \phi_z &= xy+d_z (z) = xy\ &\implies d_z (z) = 0\ \ &\implies \phi (x,y,z) = xyz\ \ &\implies W = \phi(3,4,4) - \phi(1,2,2) = (3)(4)(4)-(1)(2)(2) = \ans{44} \end{aligned}

Find div(F)div(\vec{F}) for the field F=xz,xyz,y2\vec{F}=⟨xz,xyz,−y^2⟩.

Solution

div(F)=F=x,y,zxz,xyz,y2=z+xz+0=z+xz\begin{aligned} div(\vec{F}) &= \nabla \cdot \vec{F}\ &= \left\langle \dfrac{\partial}{\partial x},\dfrac{\partial}{\partial y},\dfrac{\partial}{\partial z} \right\rangle \cdot \langle xz,xyz,-y^2 \rangle\ &= z+xz+0 = \ans{z+xz} \end{aligned}

Find div(F)div(\vec{F}) for the field F=x2y,xyz,x2y2\vec{F}=⟨x2y,xyz,−x2y2⟩.

Solution

div(F)=F=x,y,zx2y,xyz,x2y2=2xy+xz\begin{aligned} div(\vec{F}) &= \nabla \cdot \vec{F}\ &= \left\langle \dfrac{\partial}{\partial x},\dfrac{\partial}{\partial y},\dfrac{\partial}{\partial z} \right\rangle \cdot \langle x^2y,xyz,-x^2y^2 \rangle\ &= \ans{2xy+xz} \end{aligned}

  1. Find div(F)div(\vec{F}) for the field F=y,x,z\vec{F} = \langle -y,x,z \rangle.

  2. div(F)=1div(\vec{F}) = 1

  3. Find div(F)div(\vec{F}) for the field F=2x,4y,3z\vec{F} = \langle 2x,4y,-3z \rangle.

  4. div(F)=3div(\vec{F}) = 3

  5. Find div(F)div(\vec{F}) for the field F=12x,6y,6z\vec{F} = \langle 12x,-6y,-6z \rangle.

  6. div(F)=0div(\vec{F}) = 0

  7. Find div(F)div(\vec{F}) for the field F=x,y,z1+x2+y2\vec{F} = \dfrac{\langle x,y,z \rangle}{1+x^2+y^2}.

  8. div(F)=x2+y2+3(1+x2+y2)2div(\vec{F}) = \dfrac{x^2+y^2+3}{(1+x^2+y^2)^2}

Connection Between Divergence and Curl

div(curl(F))=0div(curl(\vec{F})) = 0

Verify the identity above for the field F=yz2,xy,yz\vec{F} = \langle yz^2,xy,yz \rangle.

Solution

curl(F)=×F=ı^ȷ^k^xyzyz2xyyz=z,2yz,yz2div(curl(F))=curl(F)=x,y,zz,2yz,yz2=0+2z2z=0\begin{aligned} curl(\vec{F}) &= \nabla \times \vec{F}\ &= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k}\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\ yz^2 & xy & yz \end{vmatrix}\ \ &= \langle z,2yz,y-z^2 \rangle\ \ div(curl(\vec{F})) &= \nabla \cdot curl(\vec{F})\ &= \left\langle \dfrac{\partial}{\partial x},\dfrac{\partial}{\partial y},\dfrac{\partial}{\partial z} \right\rangle \cdot \langle z,2yz,y-z^2 \rangle\ &= 0+2z-2z = \ans{0} \end{aligned}

Note

The expression curl(div(F))curl(div(\vec{F})) is meaningless, because div(F)div(\vec{F}) is a scalar, and you can't take the curl of a scalar, because you can't use it in a cross product.