Divergence and Curl
Introduction
Recall that Green's Theorem has two forms, the curl form, involving ∂ g ∂ x − ∂ f ∂ y \dfrac{\partial g}{\partial x} - \dfrac{\partial f}{\partial y} ∂ x ∂ g − ∂ y ∂ f , and the divergence form, involving ∂ f ∂ x + ∂ g ∂ y \dfrac{\partial f}{\partial x} + \dfrac{\partial g}{\partial y} ∂ x ∂ f + ∂ y ∂ g . In general, the divergence and curl can be expressed as either the dot product or cross product of the gradient vector ∇ = ⟨ ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ⟩ \nabla = \left\langle \dfrac{\partial}{\partial x},\dfrac{\partial}{\partial y},\dfrac{\partial}{\partial z} \right\rangle ∇ = ⟨ ∂ x ∂ , ∂ y ∂ , ∂ z ∂ ⟩ and the vector field F ⃗ = ⟨ f , g , h ⟩ \vec{F}=⟨f,g,h⟩ F = ⟨ f , g , h ⟩ (in three dimensions):
Div = ∇ ⋅ F ⃗ Curl = ∇ × F ⃗ \begin{aligned}
\textrm{Div } &= \nabla \cdot \vec{F}\
\textrm{Curl } &= \nabla \times \vec{F}
\end{aligned} Div Curl = ∇ ⋅ F = ∇ × F
Important Note
A vector field F ⃗ \vec{F} F is conservative if and only if ∇ × F ⃗ = 0 ⃗ . \nabla \times \vec{F} = \vec{0}. ∇ × F = 0 .
Find c u r l ( F ⃗ ) curl(\vec{F}) c u r l ( F ) for the field F ⃗ = ⟨ x , y , z ⟩ \vec{F}=⟨x,y,z⟩ F = ⟨ x , y , z ⟩ (a radial field).
Solution
∇ × F ⃗ = ∣ ı ^ ȷ ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z x y z ∣ = ( 0 − 0 ) ı ^ − ( 0 − 0 ) ȷ ^ + ( 0 − 0 ) k ^ = ⟨ 0 , 0 , 0 ⟩ \begin{aligned}
\nabla \times \vec{F} &= \begin{vmatrix}
\hat{\imath} & \hat{\jmath} & \hat{k}\
\dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\
x & y & z
\end{vmatrix}\
\
&= (0-0)\hat{\imath} - (0-0)\hat{\jmath} + (0-0)\hat{k}\
&= \ans{\langle 0,0,0 \rangle}
\end{aligned} ∇ × F = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ı ^ ∂ x ∂ x ȷ ^ ∂ y ∂ y k ^ ∂ z ∂ z ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ( 0 − 0 ) ı ^ − ( 0 − 0 ) ȷ ^ + ( 0 − 0 ) k ^ = ⟨ 0 , 0 , 0 ⟩
Find c u r l ( F ⃗ ) curl(\vec{F}) c u r l ( F ) for the field F ⃗ = ⟨ − y , x − z , y ⟩ \vec{F}=⟨−y,x−z,y⟩ F = ⟨ − y , x − z , y ⟩ (a rotation field).
Solution
∇ × F ⃗ = ∣ ı ^ ȷ ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z − y x − z y ∣ = ( 1 − ( − 1 ) ) ı ^ − ( 0 − 0 ) ȷ ^ + ( 1 − ( − 1 ) ) k ^ = ⟨ 2 , 0 , 2 ⟩ \begin{aligned}
\nabla \times \vec{F} &= \begin{vmatrix}
\hat{\imath} & \hat{\jmath} & \hat{k}\
\dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\
-y & x-z & y
\end{vmatrix}\
\
&= (1-(-1))\hat{\imath} - (0-0)\hat{\jmath} + (1-(-1))\hat{k}\
&= \ans{\langle 2,0,2 \rangle}
\end{aligned} ∇ × F = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ı ^ ∂ x ∂ − y ȷ ^ ∂ y ∂ x − z k ^ ∂ z ∂ y ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ( 1 − ( − 1 ) ) ı ^ − ( 0 − 0 ) ȷ ^ + ( 1 − ( − 1 ) ) k ^ = ⟨ 2 , 0 , 2 ⟩
Find c u r l ( F ⃗ ) curl(\vec{F}) c u r l ( F ) for the field F ⃗ = ⟨ x 2 − y 2 , x y , z ⟩ . \vec{F} = \langle x^2-y^2,xy,z \rangle. F = ⟨ x 2 − y 2 , x y , z ⟩ .
c u r l ( F ⃗ ) = ⟨ 0 , 0 , 3 y ⟩ curl(\vec{F}) = \langle 0,0,3y \rangle c u r l ( F ) = ⟨ 0 , 0 , 3 y ⟩
Find c u r l ( F ⃗ ) curl(\vec{F}) c u r l ( F ) for the field F ⃗ = ⟨ x 2 − z 2 , 1 , 2 x z ⟩ . \vec{F} = \langle x^2-z^2,1,2xz \rangle. F = ⟨ x 2 − z 2 , 1 , 2 x z ⟩ .
c u r l ( F ⃗ ) = ⟨ 0 , − 4 z , 0 ⟩ curl(\vec{F}) = \langle 0,-4z,0 \rangle c u r l ( F ) = ⟨ 0 , − 4 z , 0 ⟩
Find c u r l ( F ⃗ ) curl(\vec{F}) c u r l ( F ) for the field F ⃗ = ⟨ z 2 sin y , x z 2 cos y , 2 x z sin y ⟩ . \vec{F} = \langle z^2 \sin y,xz^2 \cos y,2xz \sin y \rangle. F = ⟨ z 2 sin y , x z 2 cos y , 2 x z sin y ⟩ .
c u r l ( F ⃗ ) = ⟨ 0 , 0 , 0 ⟩ curl(\vec{F}) = \langle 0,0,0 \rangle c u r l ( F ) = ⟨ 0 , 0 , 0 ⟩
Interpretation of Curl
Suppose that F ⃗ \vec{F} F describes the velocity field of a fluid. Then the curl of F ⃗ \vec{F} F is the tendency of particles at ( x , y , z ) (x,y,z) ( x , y , z ) to rotate about the axis that points in the direction of the curl vector.
If c u r l ( F ⃗ ) = 0 ⃗ curl(\vec{F})=\vec{0} c u r l ( F ) = 0 (a conservative vector field), then the fluid is called irrotational , as in the example above of the radial field.
Examples
Determine if F ⃗ = ⟨ x 2 y , x y z , − x 2 y 2 ⟩ \vec{F} = \langle x^2y,xyz,-x^2y^2 \rangle F = ⟨ x 2 y , x y z , − x 2 y 2 ⟩ is a conservative vector field.
Solution
∇ × F ⃗ = ∣ ı ^ ȷ ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z x 2 y x y z − x 2 y 2 ∣ = ( − 2 x 2 y − x y ) ı ^ − ( − 2 x y 2 − 0 ) ȷ ^ + ( y z − x 2 ) k ^ ≠ 0 ⃗ ⟹ F ⃗ is not conservative. \begin{aligned}
\nabla \times \vec{F} &= \begin{vmatrix}
\hat{\imath} & \hat{\jmath} & \hat{k}\
\dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\
x^2y & xyz & -x^2y^2
\end{vmatrix}\
\
&= (-2x^2y-xy)\hat{\imath} - (-2xy^2-0)\hat{\jmath} + (yz-x^2)\hat{k}\
&\neq \vec{0} \implies \ans{\vec{F} \textrm{ is not conservative.}}
\end{aligned} ∇ × F = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ı ^ ∂ x ∂ x 2 y ȷ ^ ∂ y ∂ x y z k ^ ∂ z ∂ − x 2 y 2 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ( − 2 x 2 y − x y ) ı ^ − ( − 2 x y 2 − 0 ) ȷ ^ + ( y z − x 2 ) k ^ ̸ = 0 ⟹ F is not conservative.
Determine if F ⃗ = ⟨ 2 x , − 2 y , 2 z ⟩ \vec{F}=⟨2x,−2y,2z⟩ F = ⟨ 2 x , − 2 y , 2 z ⟩ is conservative.
Yes, it is conservative.
Let F ⃗ = ⟨ y z , x z , x y ⟩ \vec{F}=⟨yz,xz,xy⟩ F = ⟨ y z , x z , x y ⟩ .
Find c u r l ( F ⃗ ) curl(\vec{F}) c u r l ( F ) .
Find the work done in moving a particle from ( 1 , 2 , 2 ) (1,2,2) ( 1 , 2 , 2 )
to ( 3 , 4 , 4 ) (3,4,4) ( 3 , 4 , 4 ) through this force field.
Solution
∇ × F ⃗ = ∣ ı ^ ȷ ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z y z x z x y ∣ = 0 ⃗ \begin{aligned}
\nabla \times \vec{F} &= \begin{vmatrix}
\hat{\imath} & \hat{\jmath} & \hat{k}\
\dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\
yz & xz & xy
\end{vmatrix}\
\
&= \vec{0}
\end{aligned} ∇ × F = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ı ^ ∂ x ∂ y z ȷ ^ ∂ y ∂ x z k ^ ∂ z ∂ x y ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = 0
Since ∇ × F ⃗ = 0 ⃗ ∇×\vec{F}=0⃗ ∇ × F = 0 ⃗ , this force field is conservative, which means that we can use the fundamental theorem of line integrals to calculate this work:
W = ∫ C F ⃗ ⋅ r ⃗ ′ ( t ) d t = ϕ ( B ) − ϕ ( A ) W = \int_C \vec{F} \cdot \vec{r}\ '(t) \ dt = \phi(B)-\phi(A) W = ∫ C F ⋅ r ′ ( t ) d t = ϕ ( B ) − ϕ ( A )
First, though, we need to find ϕ ( x , y , z ) ϕ(x,y,z) ϕ ( x , y , z ) :
ϕ x = y z ⟹ ϕ = x y z + c ( y , z ) ϕ y = x z + c y ( y , z ) = x z ⟹ c y ( y , z ) = 0 ⟹ c ( y , z ) = d ( z ) ϕ z = x y + d z ( z ) = x y ⟹ d z ( z ) = 0 ⟹ ϕ ( x , y , z ) = x y z ⟹ W = ϕ ( 3 , 4 , 4 ) − ϕ ( 1 , 2 , 2 ) = ( 3 ) ( 4 ) ( 4 ) − ( 1 ) ( 2 ) ( 2 ) = 44 \begin{aligned}
\phi_x &= yz \implies \phi = xyz + c(y,z)\
\phi_y &= xz+c_y (y,z) = xz \implies c_y (y,z) = 0\
&\implies c(y,z) = d(z)\
\
\phi_z &= xy+d_z (z) = xy\
&\implies d_z (z) = 0\
\
&\implies \phi (x,y,z) = xyz\
\
&\implies W = \phi(3,4,4) - \phi(1,2,2) = (3)(4)(4)-(1)(2)(2) = \ans{44}
\end{aligned} ϕ x ϕ y ϕ z = y z ⟹ ϕ = x y z + c ( y , z ) = x z + c y ( y , z ) = x z ⟹ c y ( y , z ) = 0 ⟹ c ( y , z ) = d ( z ) = x y + d z ( z ) = x y ⟹ d z ( z ) = 0 ⟹ ϕ ( x , y , z ) = x y z ⟹ W = ϕ ( 3 , 4 , 4 ) − ϕ ( 1 , 2 , 2 ) = ( 3 ) ( 4 ) ( 4 ) − ( 1 ) ( 2 ) ( 2 ) = 4 4
Find d i v ( F ⃗ ) div(\vec{F}) d i v ( F ) for the field F ⃗ = ⟨ x z , x y z , − y 2 ⟩ \vec{F}=⟨xz,xyz,−y^2⟩ F = ⟨ x z , x y z , − y 2 ⟩ .
Solution
d i v ( F ⃗ ) = ∇ ⋅ F ⃗ = ⟨ ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ⟩ ⋅ ⟨ x z , x y z , − y 2 ⟩ = z + x z + 0 = z + x z \begin{aligned}
div(\vec{F}) &= \nabla \cdot \vec{F}\
&= \left\langle \dfrac{\partial}{\partial x},\dfrac{\partial}{\partial y},\dfrac{\partial}{\partial z} \right\rangle \cdot \langle xz,xyz,-y^2 \rangle\
&= z+xz+0 = \ans{z+xz}
\end{aligned} d i v ( F ) = ∇ ⋅ F = ⟨ ∂ x ∂ , ∂ y ∂ , ∂ z ∂ ⟩ ⋅ ⟨ x z , x y z , − y 2 ⟩ = z + x z + 0 = z + x z
Find d i v ( F ⃗ ) div(\vec{F}) d i v ( F ) for the field F ⃗ = ⟨ x 2 y , x y z , − x 2 y 2 ⟩ \vec{F}=⟨x2y,xyz,−x2y2⟩ F = ⟨ x 2 y , x y z , − x 2 y 2 ⟩ .
Solution
d i v ( F ⃗ ) = ∇ ⋅ F ⃗ = ⟨ ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ⟩ ⋅ ⟨ x 2 y , x y z , − x 2 y 2 ⟩ = 2 x y + x z \begin{aligned}
div(\vec{F}) &= \nabla \cdot \vec{F}\
&= \left\langle \dfrac{\partial}{\partial x},\dfrac{\partial}{\partial y},\dfrac{\partial}{\partial z} \right\rangle \cdot \langle x^2y,xyz,-x^2y^2 \rangle\
&= \ans{2xy+xz}
\end{aligned} d i v ( F ) = ∇ ⋅ F = ⟨ ∂ x ∂ , ∂ y ∂ , ∂ z ∂ ⟩ ⋅ ⟨ x 2 y , x y z , − x 2 y 2 ⟩ = 2 x y + x z
Find d i v ( F ⃗ ) div(\vec{F}) d i v ( F ) for the field F ⃗ = ⟨ − y , x , z ⟩ \vec{F} = \langle -y,x,z \rangle F = ⟨ − y , x , z ⟩ .
d i v ( F ⃗ ) = 1 div(\vec{F}) = 1 d i v ( F ) = 1
Find d i v ( F ⃗ ) div(\vec{F}) d i v ( F ) for the field F ⃗ = ⟨ 2 x , 4 y , − 3 z ⟩ \vec{F} = \langle 2x,4y,-3z \rangle F = ⟨ 2 x , 4 y , − 3 z ⟩ .
d i v ( F ⃗ ) = 3 div(\vec{F}) = 3 d i v ( F ) = 3
Find d i v ( F ⃗ ) div(\vec{F}) d i v ( F ) for the field F ⃗ = ⟨ 12 x , − 6 y , − 6 z ⟩ \vec{F} = \langle 12x,-6y,-6z \rangle F = ⟨ 1 2 x , − 6 y , − 6 z ⟩ .
d i v ( F ⃗ ) = 0 div(\vec{F}) = 0 d i v ( F ) = 0
Find d i v ( F ⃗ ) div(\vec{F}) d i v ( F ) for the field F ⃗ = ⟨ x , y , z ⟩ 1 + x 2 + y 2 \vec{F} = \dfrac{\langle x,y,z \rangle}{1+x^2+y^2} F = 1 + x 2 + y 2 ⟨ x , y , z ⟩ .
d i v ( F ⃗ ) = x 2 + y 2 + 3 ( 1 + x 2 + y 2 ) 2 div(\vec{F}) = \dfrac{x^2+y^2+3}{(1+x^2+y^2)^2} d i v ( F ) = ( 1 + x 2 + y 2 ) 2 x 2 + y 2 + 3
Connection Between Divergence and Curl
d i v ( c u r l ( F ⃗ ) ) = 0 div(curl(\vec{F})) = 0 d i v ( c u r l ( F ) ) = 0
Verify the identity above for the field F ⃗ = ⟨ y z 2 , x y , y z ⟩ \vec{F} = \langle yz^2,xy,yz \rangle F = ⟨ y z 2 , x y , y z ⟩ .
Solution
c u r l ( F ⃗ ) = ∇ × F ⃗ = ∣ ı ^ ȷ ^ k ^ ∂ ∂ x ∂ ∂ y ∂ ∂ z y z 2 x y y z ∣ = ⟨ z , 2 y z , y − z 2 ⟩ d i v ( c u r l ( F ⃗ ) ) = ∇ ⋅ c u r l ( F ⃗ ) = ⟨ ∂ ∂ x , ∂ ∂ y , ∂ ∂ z ⟩ ⋅ ⟨ z , 2 y z , y − z 2 ⟩ = 0 + 2 z − 2 z = 0 \begin{aligned}
curl(\vec{F}) &= \nabla \times \vec{F}\
&= \begin{vmatrix}
\hat{\imath} & \hat{\jmath} & \hat{k}\
\dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z}\
yz^2 & xy & yz
\end{vmatrix}\
\
&= \langle z,2yz,y-z^2 \rangle\
\
div(curl(\vec{F})) &= \nabla \cdot curl(\vec{F})\
&= \left\langle \dfrac{\partial}{\partial x},\dfrac{\partial}{\partial y},\dfrac{\partial}{\partial z} \right\rangle \cdot \langle z,2yz,y-z^2 \rangle\
&= 0+2z-2z = \ans{0}
\end{aligned} c u r l ( F ) d i v ( c u r l ( F ) ) = ∇ × F = ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ı ^ ∂ x ∂ y z 2 ȷ ^ ∂ y ∂ x y k ^ ∂ z ∂ y z ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ⟨ z , 2 y z , y − z 2 ⟩ = ∇ ⋅ c u r l ( F ) = ⟨ ∂ x ∂ , ∂ y ∂ , ∂ z ∂ ⟩ ⋅ ⟨ z , 2 y z , y − z 2 ⟩ = 0 + 2 z − 2 z = 0
Note
The expression c u r l ( d i v ( F ⃗ ) ) curl(div(\vec{F})) c u r l ( d i v ( F ) ) is meaningless, because d i v ( F ⃗ ) div(\vec{F}) d i v ( F ) is a scalar, and you can't take the curl of a scalar, because you can't use it in a cross product.