Centers of Mass

Introduction

Man and son balancing on a seesaw

Suppose a man and his son balance on a seesaw. If the man weights 200200 lb and his son weighs 5050 lb, where is the balance point on a 1010 ft seesaw? Recall that the magnitude of the moment that they each produce around the balance point is defined as the product of the force they exert and their perpendicular distance from the balance point. In order to balance, these two moments must be equal:

Wfatherdfather=Wsondson200x=50(10x)200x=50050x250x=500x=2 ft\begin{aligned} W_{father} \cdot d_{father} &= W_{son} \cdot d_{son}\ 200x &= 50 (10-x)\ 200x &= 500 - 50x\ 250x &= 500\ x &= 2\ ft \end{aligned}

Therefore, in order to balance, the balance point should be placed 22 ft from the father's end of the seesaw. This balance point is called the center of mass.

Take a look at the more general case, where x\overline{x} is the position of the center of mass:

Balancing diagram

Equate the moments and solve for the location of x\overline{x}:

m1(xx1)=m2(x2x)m1x+m2x=m1x1+m2x2x=m1x1+m2x2m1+m2\begin{aligned} m_1 (\overline{x}-x_1) &= m_2 (x_2 - \overline{x})\ m_1 \overline{x} + m_2 \overline{x} &= m_1 x_1 + m_2 x_2\ \ \overline{x} &= \dfrac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \end{aligned}

Thus, in the one-dimensional case with discrete masses, x=miximi\ans{\overline{x} = \dfrac{\sum m_i x_i}{\sum m_i}}

Non-Discrete Masses

What if, instead of a bar with clear distinct masses resting on it, we have something like the situation below, where we're trying to balance an object, and the center of mass depends on its shape?

Triangle balanced

In this case, instead of using a sum to add up finitely many masses and distances, we'll use an integral (replace each sum with an integral, and replace the discrete masses with a density function ρ(x)ρ(x)):

x=abxρ(x) dxabρ(x) dx=1mabxρ(x) dx\ans{\overline{x} = \dfrac{\int_a^b x \rho(x)\ dx}{\int_a^b \rho(x)\ dx} = \dfrac{1}{m} \int_a^b x \rho (x)\ dx}

where mm is the total mass (which can be found by integrating the density function), and abxρ(x) dx\displaystyle\int_a^b x\rho(x)\ dx is called the moment about the y axis.

Two Dimensions

Consider the following figure, where we're looking down on a thin sheet in two dimensions, and we assume that this sheet has varying density given by a density function ρρ.

Thin sheet balancing

Now, there will be two coordinates for the center of mass, or the centroid. These can be found by using similar integrals to what we saw before, but we'll use double integrals this time:

x=1mRxρ(x,y) dAy=1mRyρ(x,y) dA\ans{\begin{aligned} \overline{x} &= \dfrac{1}{m} \iint_R x \rho(x,y) \ dA\ \ \overline{y} &= \dfrac{1}{m} \iint_R y \rho(x,y) \ dA \end{aligned}}

Consider the region RR bounded by the yy-axis and the curves y=ex12y=e^{-x}-\dfrac{1}{2} and y=12exy=\dfrac{1}{2}-e^{-x}. If the density of this sheet is ρ(x,y)=1ρ(x,y)=1, find its center of mass.

Solution

Start by calculating mm, since we'll need it for both formulas. Remember that the mass is the integral of the density function:

m=Rρ(x,y) dA=0ln21/2exex1/2 dy dx=0ln22exx0ln2=1ln2\begin{aligned} m &= \iint_R \rho(x,y)\ dA\ &= \int_0^{\ln 2} \int_{1/2-e^{-x}}^{e^{-x-1/2}} \ dy\ dx\ &= \int_0^{\ln 2} -2e^{-x}-x \bigg|_0^{\ln 2}\ &= 1-\ln 2 \end{aligned}

Next, apply the formulas to find the center of mass:

x=11ln20ln21/2exex1/2x dy dx=11ln20ln22xexx dx=11ln2[2xex12x22ex]0ln2=1ln212(ln2)21ln20.217y=11ln20ln21/2exex1/2y dy dx=11ln20ln212[(ex12)2(12ex)2] dx=12(1ln2)0ln2e2xex+1414e2x+ex dx=0\begin{aligned} \overline{x} &= \dfrac{1}{1-\ln 2} \int_0^{\ln 2} \int_{1/2-e^{-x}}^{e^{-x-1/2}} x\ dy\ dx\ &= \dfrac{1}{1-\ln 2} \int_0^{\ln 2} 2xe^{-x} - x\ dx\ &= \dfrac{1}{1-\ln 2} \bigg[ -2xe^{-x}-\dfrac{1}{2}x^2-2e^{-x} \bigg]0^{\ln 2}\ &= \dfrac{1-\ln 2 - \dfrac{1}{2}(\ln 2)^2}{1-\ln 2} \approx 0.217\ \overline{y} &= \dfrac{1}{1-\ln 2} \int_0^{\ln 2} \int{1/2-e^{-x}}^{e^{-x-1/2}} y\ dy\ dx\ &= \dfrac{1}{1-\ln 2} \int_0^{\ln 2} \dfrac{1}{2}\bigg[\left(e^{-x}-\dfrac{1}{2}\right)^2 - \left(\dfrac{1}{2}-e^{-x}\right)^2\bigg]\ dx\ &= \dfrac{1}{2(1-\ln 2)} \int_0^{\ln 2} e^{-2x}-e^{-x}+\dfrac{1}{4}-\dfrac{1}{4}-e^{-2x}+e^{-x}\ dx = 0\ \end{aligned}

herefore, the center of mass of this sheet is located at approximately (x,y)=(0.217,0)\ans{(\overline{x},\overline{y}) = (0.217,0)}

It shouldn't be surprising that the yy component of the center of mass is 00, because this sheet is symmetric about the xx-axis.

Consider the region R={(x,y) : 1x1,0y1}R={(x,y)\ :\ -1 \leq x \leq 1, 0 \leq y \leq 1}. If the density of this sheet is ρ(x,y)=2yρ(x,y)=2−y, find its center of mass.

Solution

Again, start by calculating mm: m=Rρ(x,y) dA=11012y dy dx=1132 dx=32x11=3\begin{aligned} m &= \iint_R \rho(x,y)\ dA\ &= \int_{-1}^{1} \int_0^1 2-y \ dy\ dx\ &= \int_{-1}^1 \dfrac{3}{2} \ dx = \dfrac{3}{2}x\bigg|_{-1}^1\ &= 3 \end{aligned}

Next, apply the formulas to find the center of mass:

x=131101x(2y) dy dx=131132x dx=13(34x211)=0y=131101y(2y) dy dx=1311y213y301 dx=131123 dx=49\begin{aligned} \overline{x} &= \dfrac{1}{3} \int_{-1}^{1} \int_0^1 x(2-y) \ dy\ dx\ &= \dfrac{1}{3} \int_{-1}^{1} \dfrac{3}{2}x\ dx\ &= \dfrac{1}{3} \left(\dfrac{3}{4}x^2\bigg|{-1}^1\right) = 0\ \overline{y} &= \dfrac{1}{3} \int{-1}^{1} \int_0^1 y(2-y) \ dy\ dx\ &= \dfrac{1}{3} \int_{-1}^{1} y^2-\dfrac{1}{3}y^3\bigg|0^1\ dx\ &= \dfrac{1}{3} \int{-1}^{1} \dfrac{2}{3}\ dx = \dfrac{4}{9}\ \end{aligned}

Therefore, the center of mass of this sheet is located at (x,y)=(0,49)\ans{(\overline{x},\overline{y}) = \left(0,\dfrac{4}{9}\right)}

  1. Consider the region R={(x,y) : 0x4,0y2}R={(x,y)\ :\ 0 \leq x \leq 4, 0 \leq y \leq 2}. If the density of this sheet is ρ(x,y)=1+x2ρ(x,y)=1+\dfrac{x}{2}, find its center of mass.

  2. (x,y)=(73,1)(\overline{x},\overline{y}) = \left(\dfrac{7}{3},1\right)

  3. Find the center of mass of the triangular plate in the first quadrant bounded by x+y=4x+y=4 with ρ(x,y)=1+x+yρ(x,y)=1+x+y.

  4. (x,y)=(1611,1611)(\overline{x},\overline{y}) = \left(\dfrac{16}{11},\dfrac{16}{11}\right)

Three Dimensions

The center of mass in three dimensions is similar, but now we add a third component, and the integrals become triple integrals. If m=Dρ(x,y,z) dV,m=\iiint_D \rho(x,y,z)\ dV, then

x=1mDxρ(x,y,z) dVy=1mDyρ(x,y,z) dVz=1mDzρ(x,y,z) dV\ans{\begin{aligned} \overline{x} &= \dfrac{1}{m} \iiint_D x \rho(x,y,z) \ dV\ \ \overline{y} &= \dfrac{1}{m} \iiint_D y \rho(x,y,z) \ dV\ \ \overline{z} &= \dfrac{1}{m} \iiint_D z \rho(x,y,z) \ dV \end{aligned}}

Consider the cone DD bounded by z=4x2+y2z=4-\sqrt{x^2+y^2} and z=0z=0. If the density of this cone is ρ(x,y,z)=1ρ(x,y,z)=1, find its center of mass.

Solution

As always, start by calculating mm. Let's try it in rectangular coordinates, but we'll get stuck pretty quickly: m=Dρ(x,y,z) dV=444x24x204x2+y21 dz dy dx=444x24x24x2+y2 dy dx\begin{aligned} m &= \iiint_D \rho(x,y,z)\ dV\ &= \int_{-4}^{4} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_0^{4-\sqrt{x^2+y^2}} 1\ dz\ dy\ dx\ &= \int_{-4}^{4} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} 4-\sqrt{x^2+y^2} \ dy\ dx\ \end{aligned}

We hit a roadblock here, and we notice the x2+y2x^2+y^2 in the expression, which tells us that cylindrical coordinates may work better:

m=02π0404rr dz dr dθ=02π044rr2 dr dθ=02π323 dθ=64π3\begin{aligned} m &= \int_0^{2\pi} \int_0^4 \int_0^{4-r} r \ dz\ dr\ d\theta\ &= \int_0^{2\pi} \int_0^4 4r-r^2\ dr\ d\theta\ &= \int_0^{2\pi} \dfrac{32}{3}\ d\theta = \dfrac{64\pi}{3} \end{aligned}

Next, apply the formulas to find the center of mass, noting again that x=rcosθx=r \cos θ and y=rsinθy=r \sin θ:

x=364π02π0404rr2cosθ dz dr dθ=364π02π04(4r2r3)cosθ dr dθ=364π02π(43r314r4)04cosθ dθ=364π02π643cosθ dθ=1π02πcosθ dθ=0Similarly, y=0z=364π02π0404rzr dz dr dθ=364π02π0412(4r)2r dr dθ=3128π02π0416r8r2+r3 dr dθ=3128π02π643 dθ=1\begin{aligned} \overline{x} &= \dfrac{3}{64\pi} \int_{0}^{2\pi} \int_0^4 \int_0^{4-r} r^2 \cos \theta \ dz\ dr\ d\theta\ &= \dfrac{3}{64\pi} \int_{0}^{2\pi} \int_0^4 (4r^2-r^3) \cos \theta \ dr\ d\theta\ &= \dfrac{3}{64\pi} \int_{0}^{2\pi} \left(\dfrac{4}{3}r^3-\dfrac{1}{4}r^4\right)\bigg|0^4 \cos \theta \ d\theta\ &= \dfrac{3}{64\pi} \int{0}^{2\pi} \dfrac{64}{3} \cos \theta \ d\theta\ &= \dfrac{1}{\pi} \int_{0}^{2\pi} \cos \theta \ d\theta = 0\ \textrm{Similarly, } \overline{y} &= 0\ \overline{z} &= \dfrac{3}{64\pi} \int_{0}^{2\pi} \int_0^4 \int_0^{4-r} zr \ dz\ dr\ d\theta\ &= \dfrac{3}{64\pi} \int_{0}^{2\pi} \int_0^4 \dfrac{1}{2}(4-r)^2r\ dr\ d\theta\ &= \dfrac{3}{128\pi} \int_{0}^{2\pi} \int_0^4 16r-8r^2+r^3\ dr\ d\theta\ &= \dfrac{3}{128\pi} \int_{0}^{2\pi} \dfrac{64}{3}\ d\theta = 1\ \end{aligned}

Therefore, the center of mass of this cone is located at (x,y,z)=(0,0,1)\ans{(\overline{x},\overline{y},\overline{z}) = \left(0,0,1\right)}

Consider the hemisphere DD with radius 44, centered at the origin, and its base on the xyxy plane. If the density of this hemisphere is ρ(ρ,ϕ,θ)=2ρ4ρ(ρ,ϕ,θ)=2−\dfrac{ρ}{4} (note the abuse of notation, with ρρ meaning both the spherical radius and the density function), find its center of mass.

Solution

Since the body is part of a sphere, we'll use spherical coordinates. If that wasn't enough of a tipoff, the density function was given in terms of spherical coordinates. To use spherical coordinates, we need to recall that x=ρsinϕcosθx=ρ \sin ϕ \cos θ, y=ρsinϕsinθy=ρ \sin ϕ \sin θ, and z=ρcosϕz=ρ \cos ϕ.

m=Dρ(ρ,ϕ,θ) ρ2 sinϕ dρ dϕ dθ=02π0π/204(2ρ4)ρ2 sinϕ dρ dϕ dθ=02π0π/2803sinϕ dϕ dθ=02π803cosϕ0π/2 dθ=02π803 dθ=160π3\begin{aligned} m &= \iiint_D \rho(\rho,\phi,\theta)\ \rho^2\ \sin\phi\ d\rho\ d\phi\ d\theta\ &= \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_0^4 \left(2-\dfrac{\rho}{4}\right) \rho^2\ \sin\phi\ d\rho\ d\phi\ d\theta\ &= \int_{0}^{2\pi} \int_{0}^{\pi/2} \dfrac{80}{3} \sin\phi\ d\phi\ d\theta\ &= \int_{0}^{2\pi} -\dfrac{80}{3} \cos\phi\bigg|0^{\pi/2}\ d\theta\ &= \int{0}^{2\pi} \dfrac{80}{3} \ d\theta = \dfrac{160\pi}{3} \end{aligned}

You should check this, but it turns out that x=y=0\overline{x}=\overline{y}=0, which shouldn't be surprising, since the hemisphere is centered at the origin.

z=3160π02π0π/204ρ cosϕ (2ρ4)ρ2 sinϕ dρ dϕ dθ=3160π02π0π/204(ρ318ρ4) sin2ϕ dρ dϕ dθ=3160π02π0π/21925sin2ϕ dϕ dθ=1850π02πcos2ϕ0π/2 dθ=1850π02π2 dθ=3625\begin{aligned} \overline{z} &= \dfrac{3}{160\pi} \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_0^4 \rho\ \cos\phi\ \left(2-\dfrac{\rho}{4}\right) \rho^2\ \sin\phi\ d\rho\ d\phi\ d\theta\ &= \dfrac{3}{160\pi} \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_0^4 \left(\rho^3-\dfrac{1}{8}\rho^4\right)\ \sin 2\phi\ d\rho\ d\phi\ d\theta\ &= \dfrac{3}{160\pi} \int_{0}^{2\pi} \int_{0}^{\pi/2} \dfrac{192}{5} \sin 2\phi\ d\phi\ d\theta\ &= \dfrac{18}{50\pi} \int_{0}^{2\pi} \cos 2\phi\bigg|0^{\pi/2}\ d\theta\ &= \dfrac{18}{50\pi} \int{0}^{2\pi} 2\ d\theta = \dfrac{36}{25} \end{aligned}

Therefore, the center of mass of this hemisphere is located at (x,y,z)=(0,0,3625)\ans{(\overline{x},\overline{y},\overline{z}) = \left(0,0,\dfrac{36}{25}\right)}

  1. Find the center of mass of the tetrahedron in the first octant bounded by z=1xyz=1−x−y and the coordinate planes if the density function is ρ(x,y,z)=1ρ(x,y,z)=1.

  2. (x,y,z)=(14,14,14)(\overline{x},\overline{y},\overline{z}) = \left(\dfrac{1}{4},\dfrac{1}{4},\dfrac{1}{4}\right)

  3. Consider the rectangular prism D={(x,y,z):0x4,0y1,0z1}D={(x,y,z) : 0≤x≤4,0≤y≤1,0≤z≤1}. If the density of this prism is ρ(x,y,z)=1+x2ρ(x,y,z)=1+\dfrac{x}{2}, find its center of mass.

  4. (x,y,z)=(73,12,12)(\overline{x},\overline{y},\overline{z}) = \left(\dfrac{7}{3},\dfrac{1}{2},\dfrac{1}{2}\right)

  5. Find the center of mass of the solid bounded by the upper half of the sphere ρ=6ρ=6 and z=0z=0 with ρ(ρ,ϕ,θ)=1+ρ4ρ(ρ,ϕ,θ)=1+\dfrac{ρ}{4}.

  6. (x,y,z)=(0,0,19885)(\overline{x},\overline{y},\overline{z}) = \left(0,0,\dfrac{198}{85}\right)

  7. Find the center of mass of the prism formed by z=xz=x, x=1x=1, y=4y=4, and the coordinate planes, if ρ(x,y,z)=2+yρ(x,y,z)=2+y.

  8. (x,y,z)=(23,73,13)(\overline{x},\overline{y},\overline{z}) = \left(\dfrac{2}{3},\dfrac{7}{3},\dfrac{1}{3}\right)